

YEAR 8 SCIENCE WEEK 4 HOMEWORK 1 & 2.

ANSWER THE QUESTIONS BEHIND YOUR EXERCISE BOOK OR ON THE PAPER ITSELF. TITLE YOUR WORK APPROPRIATELY AND UNDERLINE IT.

Science Paper 1

Stage 8

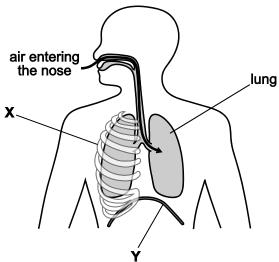
45 minutes

Name	

No additional materials are needed.

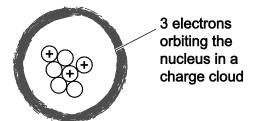
INSTRUCTIONS

- Answer all questions.
- Write your answer to each question in the space provided.
- You should show all your working on the question paper.


INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

YEAR 8 SCIENCE WEEK 4 HOMEWORK 1.


ANSWER QUESTIONS 1 TO 6 BEHIND YOUR EXERCISE BOOK OR ON THIS. TITLE YOUR WORK APPROPRIATELY AND UNDERLINE IT.

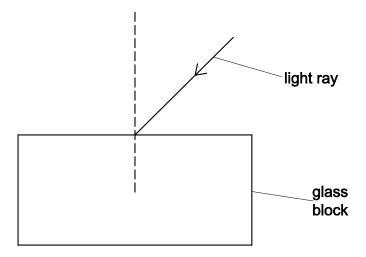
1 The diagram shows part of the human respiratory system.

(a)	(i)	Y The structures labelled X and Y change the volume of the lungs during breathing.	
		Name the structures X and Y .	
		X is	
		Y is	
	(ii)	Describe how structures X and Y move to increase the volume of the lungs.	[2]
			[2]
(b)	Mik	e and Rajiv plan an investigation to find out how running speed affects breathing rate.	
	(i)	Name the equipment they must use to measure their breathing rate.	
			[1]
	(ii)	State one variable they need to change .	
			[1]
	(iii)	State one variable they need to keep the same .	
			[1]
	(iv)	Suggest one way they record and present their results.	

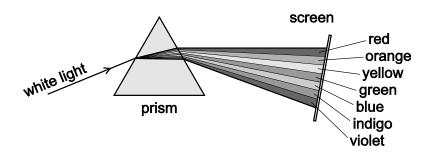
2 Aiko draws a diagram of an atom of lithium.

NOT TO SCALE

[2]


(a)	The electrons in the charge cloud are held in position.	
	They do not escape from the atom.	
	Explain why the electrons in the charge cloud cannot escape from the atom.	
	Use ideas about the charges on the particles in the atom.	
		[2]
(b)	Aiko wants to draw a diagram of an atom of sodium .	
	Describe two ways an atom of sodium is different from an atom of lithium.	
	1	
	2	

- 3 Carlos investigates what happens when light hits a mirror and when light hits a glass block.
 - (a) (i) Complete the diagram to show what happens to a light ray that hits the surface of a mirror.


[1]

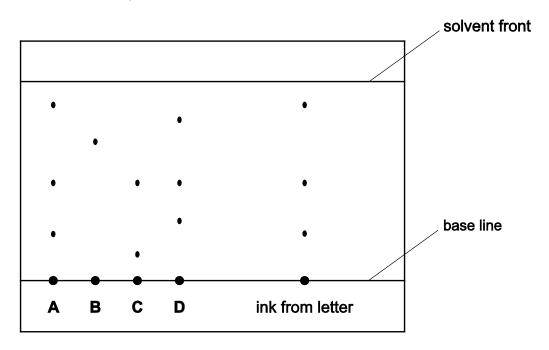
(ii) Complete the diagram to show what happens to a light ray that hits and then goes through a glass block.

[2]

(b) When white light goes through a prism, the light is refracted and split into the colours of the rainbow.

What is the name of this process?	
	[1
	11

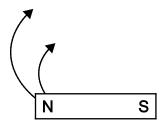
4 Here is some information about a loaf of bread.


component	amount per 100 g of bread		
energy	970 kJ		
protein	8.0 g		
carbohydrate	51 g		
fat	1.7 g		
dietary fibre	3.5 g		
salt	1.4 g		

(a)	Why does the body need a supply of protein?	
		[1]
(b)	The total mass of protein, carbohydrate, fat, dietary fibre and salt in the table does not up to 100 g.	add
	What substance makes up the remaining mass of bread?	
		[1]
(c)	(i) Calculate the amount of energy provided by 20 g of bread.	
	kJ	[1]
	(ii) Which component in the bread provides most of this energy?	
		[1]
(d)	Rajiv eats 50 g of bread.	
	This provides 5% of his recommended daily amount (RDA) of protein.	
	What is Rajiv's RDA of protein?	
	g	[2]
	<u></u> 9	

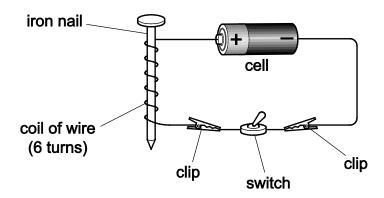
5 Lily investigates the ink on a letter.

She uses paper chromatography to separate the dyes in some inks.


Look at the results of Lily's experiment.

(a)	Describe how paper chromatography separates the dyes in ink.	
		[1]
(b)	Which ink was used to write the letter?	
	Choose from A , B , C or D .	
	Explain how you can tell.	

[2]


- **6** This question is about magnets.
 - (a) On the diagram of the bar magnet, complete the two magnetic field lines shown.

[1]

(b) Jamila makes an electromagnet.

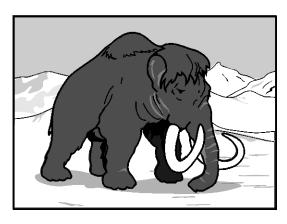
Look at the diagram for her electromagnet.

The electromagnet attracts steel paperclips.

Jamila wants to make her electromagnet **stronger**.

Write down two ways she can make her electromagnet stronger.

1	
2	
	[2]

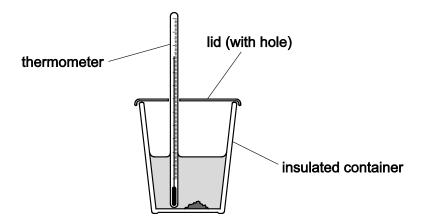

YEAR 8 SCIENCE WEEK 4 HOMEWORK 2.

ANSWER QUESTIONS 7 TO 12 BEHIND YOUR EXERCISE BOOK OR ON THIS. TITLE YOUR WORK APPROPRIATELY AND UNDERLINE IT.

7 The drawings, based on fossils, show an iguanodon and a woolly mammoth.

Iguanodon lived 120 million years ago

Woolly mammoth lived 4000 years ago


These animals **both** lived in the **same** parts of Europe but at **different** times.

Both animals are now extinct.

Scientists think that the Earth's climate cycles between warm and cold periods of time.

(a)	Does the fossil evidence support the idea that the Earth has cycles of warm and cold period of time?	ods
	Give two reasons for your answer.	
	1	
	2	
		 [2]
(b)	Explain if the fossil evidence supports the idea that each cycle takes a long period of time.	
		 [1]

8 Ahmed investigates the energy changes when some chemicals are mixed.

He measures the temperature at the start and at the end of each reaction.

Look at his results.

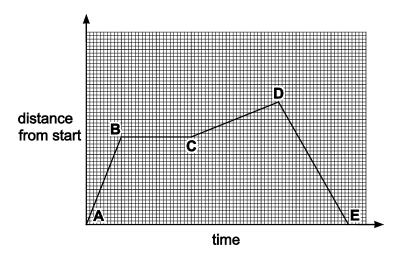
mixture	temperature at start in °C	temperature at end in °C	type of reaction
Α	18	26	exothermic
В	18	18	
С	18	10	

	metals	non-metals	inert	explosive	
	Circle the correct answer				
	What word describes sub	estances that are unre	eactive?		
(c)	Mixture B involves substa	ances that are unrea	ctive.		
					[1]
(b)	What type of reaction is r				
					[1]
	Explain how you can tell.				
(a)	The reaction in mixture A	is exothermic .			

[1]

9	Yuri	runs	a 1	$00 \mathrm{m}$	race.
J	ı uıı	IUIIS	αι	UUIII	Iauc.

He takes 13 seconds to run 100 m.


(a) Calculate Yuri's average speed.

Include the units in your answer.

Yuri's average speed =	[2

(b) Yuri does a run.

Look at the distance/time graph for Yuri's run.

Yuri stops for a rest.

Between which points does Yuri stop for a rest?

Tick (\checkmark) the box next to the correct answer.

A and B	
B and C	
C and D	
D and E	

[1]

10 Read the information about the Solar System
--

 Earth is one of the eight major planets in the Solar Syster 	m.
---	----

- Before 1554 the only known planets were Mercury, Venus, Mars, Jupiter and Saturn.
- In 1608 the first simple telescope was invented by Lippershey.
- In 1781 Uranus was discovered by Herschel.
- In 1801 Piazzi discovered the first asteroid.
- Some time later a ring of asteroids was discovered in orbit between Mars and Jupiter. This is called the asteroid belt.
- Asteroids vary in size and shape.
- In 1846 Neptune was discovered by Galle.

Use the information to help you to answer the questions.

000	,	o imorrida	ion to noip y	ou to unower the	quodiono.			
(a)	Sı	iggest why	/ astronome	rs did not discov	ver the asteroid bel	t until the early 180)0s.	
							-	
								[1]
(b)	Ci	rcle the na	me of the so	cientist who disc	overed the first ast	eroid.		
			Galle	Herschel	Lippershey	Piazzi		[1]
(c)	(i)	What are	e asteroids ı	made of?				ניו
` ,	• •							[1]
	(ii)			ot classified as				
								[1]
(d)	M	odern teles	scopes have	a much larger r	magnification than	the first telescopes		
(,			·	· ·	•	ır knowledge of as		the
		teroid belt		·		3		
	1	•••••	•••••					
	2							

[2]

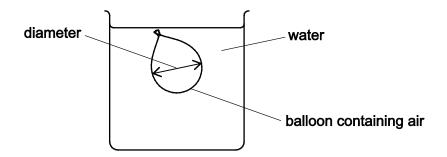
11	Chemical	formulae are	e used to	model chemica	I compounds.
----	----------	--------------	-----------	---------------	--------------

The chemical formula for glucose is C₆H₁₂O₆.

A molecule of glucose contains:

- 6 atoms of carbon, C
- 12 atoms of hydrogen, H
- 6 atoms of oxygen, O.

A molecule of sulfuric acid contains:


- 2 atoms of hydrogen, H
- 1 atom of sulfur, S
- 4 atoms of oxygen, O.
- (a) Write the chemical formula for sulfuric acid.

	forn	nula[1]
(b)		e concentration of a solution of glucose depends on how many glucose particles ar sent in 1 cm ³ of water.	re
	An	analogy for concentration is how many children are in a room.	
	(i)	What is meant by an analogy?	
		[1]
	(ii)	Describe how the analogy of children in a room can be used to model a hig concentration solution and a low concentration solution.	jh
		high concentration	
		low concentration	

[2]

12 Safia investigates how changing the temperature affects the volume of a gas.

She places a sealed balloon in water at two different temperatures.

She uses water at 10 °C and at 50 °C.

She measures the diameter of the balloon at both temperatures.

Predict what happens to the diameter of the balloon as the temperature of the water increases.

Prediction	
Explain your answer. Use ideas about particles.	
	[3]

BLANK PAGE

| Hundre | H ₹ 5 N N 114 115 N S B i Bismuth Dismuth Di > ≥ The Periodic Table of Elements Group CO Cobalt 59 45 45 4103 Ir Information 109 MI - I 🔓 -Mn angeness 55 43 55 Angeles 186 Angeles 196 Angeles 1 atomic number atomic symbol name relative atomic mass SC Scandlum 45 39 45 39 45 45 57-71 anthanoids

			_			_
7	3	lutetium 175	103	ت	lawrenclum	
		ytterbium 173				
69	Ę	thulium 169	5	PΨ	mendelevium	
89	ш	erbium 167	100	Æ	fermium	ı
29	욷	holmium 165	8	ВS	einsteinium	1
99	<u>5</u>	dysprosium 163	86	ರ	celifornium	
92	<u>P</u>	terbium 159	97	番	berkellum	1
49	පි	gadolinium 157	96	ညီ	curlum	ı
æ	盁	europium 152	92	Am	americium	
62	Sm	samarium 150	8	P	plutonium	ı
9	F	promethium -	88	å	neptunium	
9	P	neodymium 144	92	>	uranlum	250
28	ፚ	praseodymium 141	8	Pa	protectinium	3
28	පී	cerium 140	96	ᆮ	thorlum	707
24	Ľa	lanthanum 139	88	Ac	actinium	ı

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

actinoids

Copyright © UCLES, 2020

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.