

VIRAJ INTERNATIONAL ACADEMY

NAME	INDEX NO
SCHOOL	SIGN
DATE	

233/1

CHEMISTRY

Paper 1

2 HOURS

<u>Instructions to candidates</u>

- (a) Write your name, index number and the name of your school in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) Answer all questions in this question paper.
- (d) Answers to all questions must be written in the spaces provided in this booklet.
- (e)All working MUST be clearly shown.
- (f)KNEC mathematical tables and non-programmable silent electronic calculators may be used.
- (g) Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

For Examiner's Use Only

Question	Maximum score	Candidate's score	
1-30	80		

This paper consists of 13 printed pages.

1.	(a) State graham's law of diffusion.	(1 mark)
		•••••
	(b) 48cm^3 of an oxide of Nitrogen diffused through a porous plug in the same 159 cm^3 of helium to diffuse through the same plug under similar conditional molecular mass of the oxide? (He = 4, N = 14)	
		•••••
2.	3.1 of an organic compound containing Carbon hydrogen and oxygen only parbon (IV) oxide and 2.0g of water on complete combustion.	produced 4.4g of
	(a) Calculate its empirical formula.	(2 mark)
		•••••
	(b) Calculate in molecular formula if its formula mass is 62	(1 mark)

3.	Sketch the cooling curve of a pure substance and impure substance in t marks)	the sane axis. (2
4.	(a) Define the term solubility.	(1 mark)
	(b) The mass of a solution of salt of sodium chloride is 70 grams. This solution of sodium chloride dissolved in it. The solubility of this salt is 30 gram water at 25°C. 65 grams of sodium chloride salt are added to the solution much sodium chloride will remain undissolved.	ns / 100 grams of

5. Study the table for certain properties of substances A, B, C and D.

~ ***	by the there is restain properties of swestumers in, 2, 6 unit 2.						
		Melting point ⁰ c	Solubility in water	Electrical conduct			
A		-119 ⁰ c	Soluble	Solution does not conduct			
В		1020°c	Soluble	Solution conducts			
С		1740°c	Insoluble	Does not conduct			
D		1600°c	Insoluble	Conducts at room temperature			

Which of the substances A, B, C and D: (4 marks)

- (i) Is a metal
- (ii) Has a simple molecular structure.....
- (iii) Has a giant ionic structure.....
- (iv) Has a giant covalent structure.....
- 6. The table below gives percentages of a radioactive isotope of Bismuth that remain after decaying at different times.

Time	0	6	12	22	38	62	100
% of Bismuth	100	81	65	46	29	12	13

(i) Plot a graph of the percentage of remaining vertical axis against time. (3 marks)

	(ii) Use your graph to determine the half-life of the Bismuth isotope. (1 mark)
7.	An equilibrium exists between the reaction of chromate ion $(cro_42^{(aq)})$ and dichromate ions $(Cr_2O_7^{2-})$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	State and explain observations made when aqueous HCl is added to the above system at equilibrium. (2 marks)

8. The table below gives factors which affect the rate of the reaction.

Factor	Effect on rate of reaction	Explanation
Using zinc powder instead of zinc granules		
	½ mark	1 mark
Heating the reaction		
	½ mark	1 mark

Complete the table to show how the factors given affect the rate of reaction and give an explanation for each effect.

9.	(a) Name two cations making water hard.	(1 mark)
	(b) By use of an ionic equation, shows how sodium carbonate makes permane soft.	ent hard water (1 mark)
10.	Describe a chemical test which can be used to differentiate between sodium sodium sulphate.	n carbonate and (2 marks)
11.	Explain the observation using equation mad when two to three drops of agrare added to zinc ions until in excess.	ueous ammonia (2 marks)
12.	A gas of mass 1.8g was found to have a density of $1.12g$ / litre at 25° C and 7- its molecular weight at r.t.p. molar gas volume = 24 litres and temperature 25°	45 mmHg. Find C at
	760 mmHg.	(3 marks)

	Bond energy H 436 D 489	he following table t	eaction. calculate ΔH for the reaction	(1 mark)
Bond H – 1 O = 0	Bond energy H 436 D 489		o calculate ΔH for the rea	ction. (2 ma
Bond H – 1 O = 0	Bond energy H 436 D 489		o calculate ΔH for the read	ction. (2 ma
Bond H – 1 O = 0	Bond energy H 436 D 489		o calculate ΔH for the rea	ction. (2 ma
Bond H – 1 O = 0	Bond energy H 436 D 489		o calculate ΔH for the rea	ction. (2 ma
H-1 $O=0$	H 436 D 489	gy Kj mol ⁻¹		
O = 0	O 489			
O-1	H 464			
			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	•••••			
•••••				
	•••••	• • • • • • • • • • • • • • • • • • • •		
••••••	•••••		•••••	
. The set up be	ow indicate how hyd	drogen gas I was pa	ssed over heated copper (ii) oxide.
		<u> </u>	K	
			flame	Z:
DRT.	0778	1/6		•
H	44 / 4 // 1	V ///1	<i>/</i> /	
' '2		V ///)		
		V(1)		
		N HEAT (C	om TI Exide	
	111	HEAT CO	oper II exide	
State one mi				(1 mark)
State one mi	take in the set up and			(1 mark)
State one mi				(1 mark)
State one mi				(1 mark)
State one mi				(1 mark)
	stake in the set up and	d rectify.		

	(ii)	Before heating is stopped, a stream of hydrogen gas is passed continued the combustion tube until it has cooled explain why.	nuously through (1 mark)
15.		was stung by a wasp while on his way to the market, he felt a lot of p	
	you tre	eat Musau to relieve him of the pain?	(2 marks)
16.		drogen Sulphide is a strong reducing agent. Explain the observations makes is bubbled through a solution of Iron (iii) chloride.	nade when this (2 marks)
	(b) Wr	rite the chemical equation involved in the reaction.	(1 mark)
17.		rmula given represents a position of a polymer.	
	(a) Giv	ve the name of the polymer.	(1 mark)
	(b) On	e disadvantage of continued use of this polymer.	(1 mark)

18.	. Describe how the percentage of mass of copper in copper carbonate can be	determined. (3 mark)
19.	. Copper is listed on the periodic table as having a relative atomic mass o books indicate two isotopes of copper, with relative masses of 62.93 ar percent abundance of each isotope (2m	
20.	A form 4 student of Supamo High school was told to prepare a pure same Carbonate salt starting with Copper metal. Describe how the student preplaboratory. (3m	1 1 '
21.	. How many cubic centimeters of hydrogen chloride gas at s.t.p wou precipitate all silver ions from 32cm ³ of 0.08M silver nitrate solution? (Mo s.t.p = 24dm ³) (3m	

22. The following half equations refer to half-cells A and B and their electrode potentials

	measured at standard states.		
	A: $2H^{+}_{(aq)} + O_{2(g)} + 2e^{-} \longrightarrow H_{2}O_{2(l)} E^{\theta} = 0.68V$		
	B: $Ag^+ + e \longrightarrow Ag_{(s)} + Ag_{(s)}$ $E^+ = +0.80V$		
	a) Calculate the e.m.f. of the cell formed from A and B.	(2marks)	
	b) Explain why potassium chloride is not suitable salt for the bridge of t	this cell (1mark)	
23	. Compound Q was reacted with hydrogen chloride to produce compound R formula is shown below	whose structural	
	CH ₃ CH ₂ CH(CH ₃)CHClCH ₃		
	a) Give the structural formula of Q	(1mark)	
	b) Which type of reaction takes place in the reaction above?	(1mark)	
	c) The boiling point of R is slightly higher than that of Q. Explain	(1mark)	
24	. State and explain one effect of sulphur (IV) oxide causes environmental poll	ution. (2marks)	

25. A mixture contains sodium chloride, sugar and camphor. The table below shows the solubility of these solids in different liquids.

Liquid	Water	Ethanol	Ether
Sodium chloride	Soluble	Insoluble	Insoluble
Camphor	Soluble	Insoluble	Very soluble
Sugar	Soluble	Soluble	Insoluble

	Explain how sugar can be obtained from a mixture of sodium chloride, can sugar.	phor and (3 marks)
26	The table below gives the first ionization energies of the alkali metals	•••••••
∠0.	The table below gives the first ionization energies of the alkali metals.	

 Element
 1st ionization energy kJ mol-1

 A
 494

 B
 418

 C
 519

a) De	efine the term ionization energy.	(1mark)
b) W	hich of the three metals is the least reactive? Give a reason.	(2marks)

27. Nitrates of metals A, B, C were heated and the products of the reactions recorded in the table below.

Products

Nitrate of metal

	A		Metal nitrate and oxygen	-
	В		Free metal, nitrogen (IV) Oxide and oxygen gas	-
	С		Metal oxide, nitrogen (IV) oxide and oxygen gas	
	a) Name two possible identities of metal A.		(1mark)	
	•••••	•••••		
	b)	Name the two po	ossible identity of metal B	(1mark)
	c) Calcium nitrate is one of the nitrates which forms the products in Calcium show how the products are formed.		Using chemical (1mark)	
28. When magnesium ribbon is burnt in air two possible products are f products are dissolved in distilled water and warmed slightly, smel observed.(i) Write the formulae of the product responsible for the production			in distilled water and warmed slightly, smell of	ammonia gas is
	(ii)	Write a balance distilled water.	d chemical equation which occurs when the produc	ct is dissolve in (1 mark)
29. Explain why iron III chloride is fairly soluble in methylbenzene while Magnesiu insoluble. (2			esium chloride is (2 marks)	
			•••••	
		•••••		•••••
	•••••			

30. In the industrial preparation of oxygen, state: (a) How dust particles are removed from air.	(1 mark)	
(b) Why CO ₂ is removed before the mixture is cooled to -25 ^o C.	(1 mark)	

THIS IS THE LAST PRINTED PAGE