SET 8 CHEMISTRY PAPER 2 MARKING SCHEME

Question 1

a) $ZnCO_{3(s)} \ + \ 2HCl_{(aq)} \ \rightarrow ZnCl_{2(aq)} \ + \ Co_{2(g)} \ + \ H_2O_{(l)} \ ^{\sqrt{1}mk}$ i. To remove traces of hydrogen chloride gas $\sqrt[n]{1mk}$ ii. Some Co_2 gas may dissolve in the water $\sqrt{1}mk$ iii. $2NaOH_{(aq)} + H_2O_{(l)} \rightarrow Na_2CO_{3(aq)} + H_2O(l)^{\sqrt{1}mk}$ iv. $Na_2CO_{3(aq)} + H_2O_{(l)} + CO_{2(g)} \rightarrow 2NaHCO_{3(s)} \sqrt{1mk}$ √1mk Heat the sodium hydrogen carbonate. v. $2NaHCO_{3(s)} \quad \underline{Heat} \quad Na_2CO_{3(s)} + H_2O_{(l)} + Co_{2(g)} \sqrt{1mk}$ vi. b) $=\frac{30 \times 1}{1000} \sqrt{\frac{1}{2} \text{ mk}}$ (moles of NaOH that reacted) i. $= 0.03^{\sqrt{\frac{1}{2}} \text{mk}}$ Initial moles of HCl = $\frac{50 \times 1}{1000} \sqrt{\frac{1}{2} \text{ mk}}$ ii. $= 0.05^{\sqrt{\frac{1}{2}mk}}$ $NaOH_{(aq)} + HCl_{(aq)} \rightarrow NaCl_{(aq)} + H_2O_{(l)}$ Acid : base = 1 : 1 Therefore, . : Moles of HCl that reacted with NaOH 0.03 = $\begin{array}{c} 0.05-0.03 \ ^{\sqrt{1/2}\ mk} \\ 0.02 \ ^{\sqrt{1/2}\ mk} \end{array}$. : Moles of HCl that reacted with XCO₃ = = $XCO_{3(s)} + 2HCl_{(aq)} \rightarrow 2XCl_{(aq)} + CO_{2(g)} + H_2O_{(l)}$ iii. Acid : carbonate = 2 : 1 Therefore, $\frac{1}{2} \ge 0.02^{\sqrt{1}/2} = 0.02^{1}$ Moles of XCO₃ that reacted with HCl = $0.01^{\sqrt{1/2}} \text{ mk}$ = 0.01 moles contain 1g 1 mole has ? $=\frac{1 x 1}{0.01} g^{\sqrt{1/2} mk}$ $= 100g^{\sqrt{1/2} mk}$ $x + 12 + 48 = 100^{\sqrt{\frac{1}{2} \text{mk}}}$ iv. x + 60 = 100 $x = 40^{\sqrt{1/2} mk}$

Question 2

Alkali metals $\sqrt[1]{1mk}$ i.

ii.

- B is more reactive than D. $\sqrt{1}$ the outermost energy level electron in D is more firmly held i. than in S $\sqrt{1}$ mk
- ii. J is more reactive than K. $\sqrt[1]{2} \frac{mk}{mk}$ the nuclear electron attraction is higher in J than in K. $\sqrt[1]{2} \frac{mk}{mk}$ E has a larger atomic radius than F. $\sqrt[1]{1mk}$ nuclear charge increases across the period. $\sqrt[1]{1mk}$
- iii.
- Before G $\sqrt[]{1mk}$ iv.
- The melting point increases $\sqrt[1]{1}$ across the period. Due to increase in the strength of the metallic v. bonds formed as the number of valency electrons increases. $\sqrt[1/2]{mk}$
- $EK_3^{\sqrt{1}mk}$ vi.
- Ionic / electrovalent bond $\sqrt[1]{1mk}$ it is formed through transfer of electrons from metal to a non metal. vii. √1mk
- Used in light bulbs. $\sqrt[1]{1mk}$ viii.

2,8,8,8 $^{\sqrt{1/2}}$ mk ix. С =

2.8 ^{√ 1/2} mk G =

Ouestion 3

a)

I = polymerization $\sqrt{1}$ mk i.

II – Thermal Cracking $\sqrt{1}$ mk

- A = 1,2 dibromopropane $\sqrt{1}$ mk ii.
- $B = Ethyne \sqrt{1}$
- Asbestos ^{√1mk} iii.

iv.
$$\begin{pmatrix} H & CH_3 \\ | & | \\ C & - & C \\ | & | \\ H & H \end{pmatrix}_n^{\sqrt{1}mk}$$

b)

As a fuel $\sqrt{1}$ mk i.

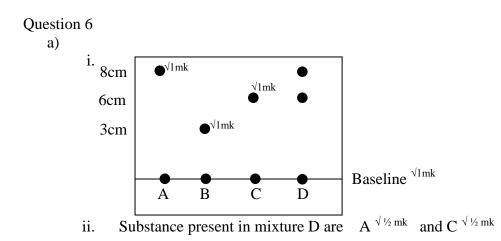
As ink solvent $\sqrt[1]{1mk}$ ii.

c)

i.
$$C_{3}H_{6(g)} \rightarrow CH_{4(g)} + C_{2}H_{2(g)}^{\sqrt{1}mk}$$

 $C_3H_{6(g)} + Br_{2(g)} \rightarrow C_3H_6Br_{2(g)} \sqrt{1}mk$ ii.

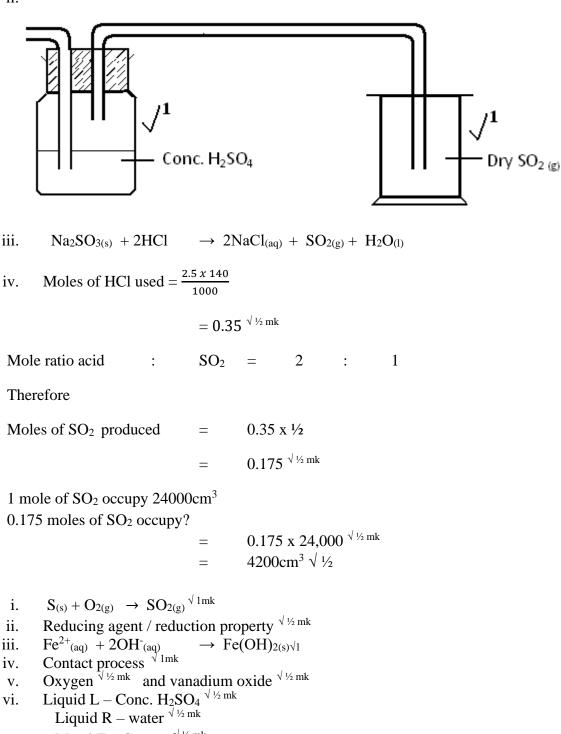
Ouestion 4


i.

- √1mk a) A – Potassium Nitrate / Sodium Nitrate √1mk
- b) Gentle warming / Moderate temperature
- c) Yellow $\sqrt[1]{1mk}$ It contains dissolved nitrogen (iv) oxide $\sqrt[1]{1mk}$
- d) To condense nitric (V) acid fumes $\sqrt[1]{1mk}$
- e)
- √1mk Nitrogen (ii) oxide
- √1mk ii. Nitrogen (iv) oxide
- Nitrogen (ii) Oxide is oxidized by oxygen $\sqrt[1]{1mk}$ iii.
- $3 \text{ Cu (NO_3)}_{2(aq)} + 2 \text{NO}_{(g)} + 4 \text{H}_2 \text{O}_{(l)}^{\sqrt{1}\text{mk}}$ $3Cu_{(s)} + 8HNO_{3(ad)}$ iv. \rightarrow

- f)

b)
$$2H_2O_{2(1)}$$
 MnO₂ $2H_2O_{(1)} + O_{2(g)}$ $\sqrt{1}mk$


- i. To ensure that all the oxygen has been used up. $\sqrt{1}$
- ii. For maximum contact between copper and oxygen so that reaction occurs completely. $\sqrt[1]{lmk}$
- iii. The brown copper metal turned into black copper (ii) oxide. $\sqrt{1}$ mk
- iv. $2Cu_{(s)} + O_{2(g)} \rightarrow 2CuO_{(s)}$ $\sqrt{1}mk$
- v. Volume of oxygen used = $110 87.5 \ cm^{3} \sqrt{\frac{1}{2} \text{ mk}}$ % of oxygen used = $\frac{22.5}{110} \ x \ 100 \sqrt{\frac{1}{2} \text{ mk}}$ = $20.5 \sqrt{\frac{1}{2} \text{ mk}}$
- vi. Making oxyacetylene flame used in welding . $\sqrt[1]{lmk}$

- b) Add water to the mixture, stir to dissolve $\sqrt[]{\frac{1}{2} \text{ mk}}$ calcium chloride as residue. $\sqrt[]{}$ Evaporate the filtrate to dryness $\sqrt[]{\frac{1}{2} \text{ mk}}$ to obtain solid calcium chloride. $\sqrt[]{\frac{1}{2} \text{ mk}}$
- c)
- I. Fractional distillation $\sqrt{1}$ mk
- II. Since the two liquids are immiscible, pour both liquids in a separating funnel $\sqrt[4]{2} \text{ mk}}$ and allow them to settle. The denser liquid will settle at the bottom and the less dense $\sqrt[4]{2} \text{ mk}}$ will form a second layer on top. $\sqrt[4]{2} \text{ mk}}$ open tap and run out the liquid in the bottom layer leaving the liquid in the second layer in the funnel. $\sqrt[4]{2} \text{ mk}}$

i. Sodium Sulphite $\sqrt{1}$ mk

ii.

- Metal Z Copper $\sqrt{\frac{1}{2}}$ mk
- vii. If liquid R (water) is used in step V it would react with $SO_{3(g)}$ so exothermically that the acid vaporizes giving acid mist $\sqrt[1]{2} \text{ mk}$. The mist is not easily condensed and therefore results to serious explosions while use of liquid L.(Conc. H₂SO₄) in step vi would not cause dilution of oleum $\sqrt[1]{1/2} \text{ mk}$.

b)