
**1** A gaseous substance is slowly cooled and the temperature recorded every second.

The results are shown on the graph.



At which point is the substance a solid?

**2** A gas is released at point Q, in the apparatus shown.

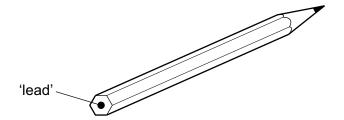


Which gas changes the colour of the damp universal indicator paper most quickly?

|   | gas            | relative<br>molecular mass |
|---|----------------|----------------------------|
| Α | ammonia        | 17                         |
| В | carbon dioxide | 44                         |
| С | chlorine       | 71                         |
| D | hydrogen       | 2                          |

3 Which statement describes the bonding in sodium chloride?

**A** A shared pair of electrons between two atoms leading to a noble gas configuration.


**B** A strong force of attraction between oppositely charged ions.

**C** A strong force of attraction between two molecules.

**D** A weak force of attraction between oppositely charged ions.

© UCLES 2020 0620/02/SP/23

4 The 'lead' in a pencil is made of a mixture of graphite and clay.



When the percentage of graphite is increased, the pencil moves across the paper more easily.

Which statement explains this observation?

- A Graphite has a high melting point.
- **B** Graphite is a form of carbon.
- **C** Graphite is a lubricant.
- **D** Graphite is a non-metal.
- **5** Which statement about metals is **not** correct?
  - **A** They conduct electricity because delocalised electrons can move throughout the metal.
  - **B** They consist of layers of atoms that can slide over each other.
  - **C** They have a giant lattice of oppositely charged ions in a 'sea' of delocalised electrons.
  - **D** They have a giant lattice of positive ions in a 'sea' of delocalised electrons.
- **6** Aqueous iron(III) sulfate and aqueous sodium hydroxide react to give a precipitate of iron(III) hydroxide and a solution of sodium sulfate.

What is the balanced symbol equation for this reaction?

**A** 
$$Fe_2(SO_4)_3(aq) + 2NaOH(aq) \rightarrow Fe(OH)_3(s) + Na_2SO_4(aq)$$

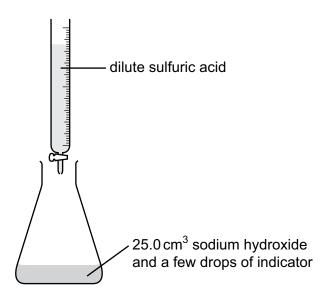
**B** 
$$Fe_2(SO_4)_3(aq) + 3NaOH(aq) \rightarrow Fe(OH)_3(s) + 3Na_2SO_4(aq)$$

$$\mathbf{C}$$
 Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>(aq) + 6NaOH(aq)  $\rightarrow$  2Fe(OH)<sub>3</sub>(s) + 3Na<sub>2</sub>SO<sub>4</sub>(aq)

$$\mathbf{D} \quad 2 \operatorname{Fe}_{2}(\operatorname{SO}_{4})_{3}(\operatorname{aq}) + 6 \operatorname{NaOH}(\operatorname{aq}) \rightarrow 4 \operatorname{Fe}(\operatorname{OH})_{3}(\operatorname{s}) + 6 \operatorname{Na}_{2} \operatorname{SO}_{4}(\operatorname{aq})$$

- 7 Which information is needed to calculate the relative atomic mass of an element?
  - **A** The total number of protons and neutrons in the most abundant isotope.
  - **B** The nucleon numbers and the total number of isotopes.
  - **C** The mass number and abundance of each of its isotopes.
  - **D** The atomic number and abundance of each of its isotopes.

The equation for the reaction between sodium carbonate and excess dilute hydrochloric acid is 8 shown.


$$Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2$$

When 26.5 g of sodium carbonate reacts with excess dilute hydrochloric acid, what is the maximum volume of carbon dioxide produced?

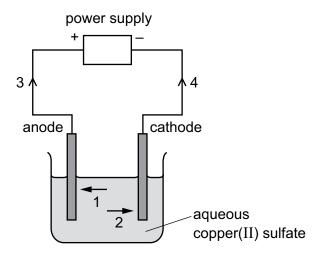
- 6dm<sup>3</sup>
- **B**  $12 \, \text{dm}^3$  **C**  $18 \, \text{dm}^3$  **D**  $24 \, \text{dm}^3$

A volumetric pipette is used to measure 25.0 cm<sup>3</sup> of 2.0 mol/dm<sup>3</sup> aqueous sodium hydroxide into a 9 conical flask.

A burette is filled with dilute sulfuric acid.



The equation for the reaction is shown.


$$2NaOH + H2SO4 \rightarrow Na2SO4 + 2H2O$$

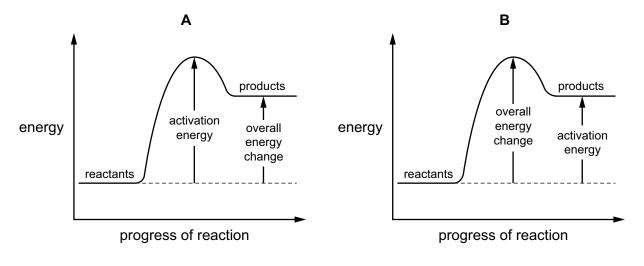
The reaction requires 50.0 cm<sup>3</sup> of dilute sulfuric acid to reach the end-point.

What is the concentration of the dilute sulfuric acid in mol/dm<sup>3</sup>?

- $0.50\,\mathrm{mol/dm^3}$
- $1.0 \, \text{mol/dm}^3$ В
- $2.0\,\mathrm{mol/dm^3}$ C
- $4.0 \, \text{mol/dm}^3$ D

© UCLES 2020 0620/02/SP/23 10 The diagram shows a circuit used to electrolyse aqueous copper( $\Pi$ ) sulfate.



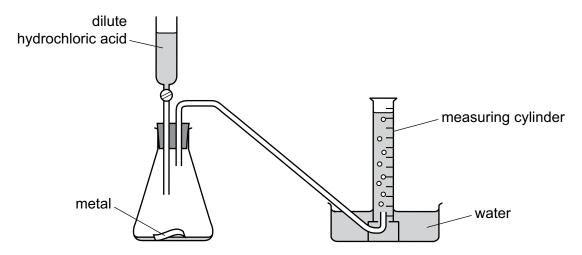

Which arrows indicate the movement of the copper ions in the electrolyte and of the electrons in the external circuit?

|   | copper ions | electrons |
|---|-------------|-----------|
| Α | 1           | 3         |
| В | 1           | 4         |
| С | 2           | 3         |
| D | 2           | 4         |

11 Which row shows the waste products released from the exhaust of a vehicle powered using a hydrogen—oxygen fuel cell?

|   | carbon dioxide | oxides of nitrogen | water |
|---|----------------|--------------------|-------|
| Α | ✓              | ✓                  | ✓     |
| В | ×              | ✓                  | ✓     |
| С | ✓              | ×                  | ×     |
| D | ×              | ×                  | ✓     |

12 Which diagram is a correctly labelled reaction pathway diagram for an endothermic reaction?






- 13 Which changes are physical changes?
  - 1 melting ice to form water
  - 2 burning hydrogen to form water
  - 3 adding sodium to water
  - 4 boiling water to form steam
  - **A** 1 and 2 **B** 1 and 4 **C** 2 and 3 **D** 3 and 4

© UCLES 2020 0620/02/SP/23

**14** The diagram shows an experiment to measure the rate of a chemical reaction.



Which change decreases the rate of reaction?

- A adding water to the flask
- **B** heating the flask during the reaction
- C using more concentrated acid
- D using powdered metal
- 15 Which row describes the effect of increasing concentration and increasing temperature on the collisions between reacting particles?

|   | increasing concentration                                                       | increasing temperature                                                         |
|---|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| A | more collisions per second only                                                | more collisions per second only                                                |
| В | more collisions per second only                                                | more collisions per second and more collisions with sufficient energy to react |
| С | more collisions per second and more collisions with sufficient energy to react | more collisions per second only                                                |
| D | more collisions per second and more collisions with sufficient energy to react | more collisions per second and more collisions with sufficient energy to react |

**16** Methanol is prepared by the reversible reaction shown.

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$

The forward reaction is exothermic.

Which conditions produce the highest equilibrium yield of methanol?

|        | temperature | pressure |  |
|--------|-------------|----------|--|
| A high |             | high     |  |
| В      | high        | low      |  |
| С      | low         | high     |  |
| D      | low         | low      |  |

17 When chlorine gas dissolves in water a reaction occurs.

$$Cl_2 + H_2O \rightarrow HCl + HClO$$

Which row of the table identifies the oxidation number for chlorine in the chlorine-containing species?

|   | Cl <sub>2</sub> | HC1 | HC <i>1</i> O |
|---|-----------------|-----|---------------|
| Α | -1              | -1  | -1            |
| В | 0               | -1  | -1            |
| С | -1              | +1  | +1            |
| D | 0               | -1  | +1            |

18 Four different solutions, J, K, L and M, are tested with universal indicator.

| solution                        | J     | K   | L      | М      |
|---------------------------------|-------|-----|--------|--------|
| colour with universal indicator | green | red | purple | orange |

Which solutions are acidic?

A J and M B K and M C K only D L only

19 Which solution has the lowest pH?

**A** 0.1 mol/dm<sup>3</sup> ammonia solution

**B** 0.1 mol/dm<sup>3</sup> ethanoic acid

C 0.1mol/dm³ hydrochloric acid

**D** 0.1 mol/dm<sup>3</sup> lithium hydroxide

© UCLES 2020 0620/02/SP/23

20 Magnesium, calcium, strontium and barium are Group II elements.

Group II elements follow the same trends in reactivity as Group I elements.

Which statements about Group II elements are correct?

- 1 Calcium reacts faster than magnesium with water.
- 2 Barium reacts less vigorously than magnesium with dilute acid.
- 3 Strontium oxidises in air more slowly than barium.
- **A** 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only
- 21 Chlorine, bromine and iodine are elements in Group VII of the Periodic Table.

Which statement about these elements is correct?

- **A** The colour gets lighter down the group.
- **B** The density decreases down the group.
- **C** They are all gases at room temperature and pressure.
- **D** They are all non-metals.
- 22 Which row describes the properties of a typical transition element?

|   | melting point | variable oxidation number | can act as a<br>catalyst |
|---|---------------|---------------------------|--------------------------|
| Α | high          | no                        | no                       |
| В | high          | yes                       | yes                      |
| С | low           | no                        | yes                      |
| D | low           | yes                       | no                       |

- **23** Which statement about the noble gases is correct?
  - A Noble gases are diatomic molecules.
  - **B** Noble gases are reactive gases.
  - C Noble gases have full outer electron shells.
  - **D** The noble gases are found on the left-hand side of the Periodic Table.

- 24 What is a property of all metals?
  - A conducts electricity
  - **B** hard
  - C low melting point
  - **D** reacts with water
- 25 Which statement explains why aluminium is used in the manufacture of aircraft?
  - A It conducts heat well.
  - B It has a low density.
  - **C** It is a good insulator.
  - **D** It is easy to recycle.
- 26 The section of the reactivity series shown includes a newly discovered metal, symbol X.

Ca

Mg

Fe

Χ

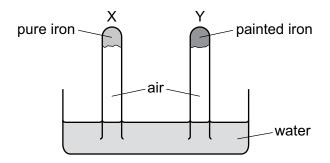
Η

Cu

The only oxide of X has the formula XO.

Which equation shows a reaction which occurs?

$$\textbf{A} \quad \text{Cu(s)} \ + \ X^{2^+}(\text{aq}) \ \rightarrow \ \text{Cu}^{2^+}(\text{aq}) \ + \ X(\text{s})$$


**B** 
$$2X(s) + Cu^{2+}(aq) \rightarrow 2X^{+}(aq) + Cu(s)$$

$$\mathbf{C}$$
 X(s) + Fe<sub>2</sub>O<sub>3</sub>(s)  $\rightarrow$  2Fe(s) + 3XO(s)

$$\textbf{D} \quad \text{X(s)} \, + \, 2 \text{HC} l \, (\text{aq}) \, \rightarrow \, \text{XC} \, l_2(\text{aq}) \, + \, \text{H}_2(\text{g})$$

- 27 Which metal compound produces a gas that turns limewater milky when it is heated with a Bunsen burner?
  - A copper(II) carbonate
  - B magnesium nitrate
  - C sodium sulfate
  - **D** zinc nitrate

- 28 Which statement about the extraction of iron in a blast furnace is correct?
  - A Calcium oxide reacts with basic impurities.
  - **B** Carbon is burnt to provide heat.
  - **C** Iron(III) oxide is reduced to iron by carbon dioxide.
  - **D** The raw materials are bauxite, limestone and coke.
- **29** An experiment to investigate the effect of painting iron is shown.



The experiment is left for seven days.

What happens to the water level in test-tubes X and Y?

|         | test-tube X | test-tube Y |
|---------|-------------|-------------|
| A falls |             | rises       |
| В       | no change   | no change   |
| С       | rises       | falls       |
| D       | rises       | no change   |

**30** Bauxite contains aluminium oxide.

Aluminium is extracted from aluminium oxide by electrolysis.

Which statement is a reason for why cryolite is added to the electrolytic cell used to extract aluminium?

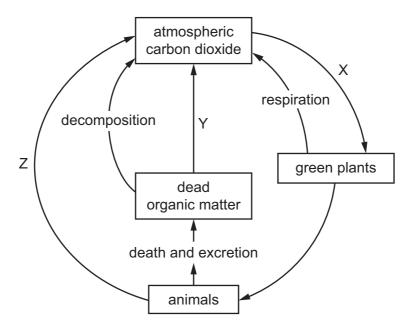
- **A** Cryolite decreases the rate at which aluminium ions are discharged.
- **B** Cryolite lowers the melting point of the electrolyte mixture.
- **C** Cryolite prevents the carbon anodes being burned away.
- **D** Cryolite removes impurities from the bauxite.

**31** Oxides of nitrogen are formed in car engines and are a source of air pollution.

To decrease this pollution, catalytic converters are fitted to car exhausts.

What happens to the oxides of nitrogen in the catalytic converter?

- **A** combustion
- **B** cracking
- **C** oxidation
- **D** reduction
- **32** Ammonia is manufactured by the Haber Process.


$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

The forward reaction is exothermic.

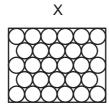
Which conditions maximise the yield of ammonia?

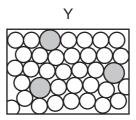
|   | pressure | temperature |  |
|---|----------|-------------|--|
| Α | high     | high        |  |
| В | high     | high low    |  |
| С | low      | high        |  |
| D | low      | low         |  |

## **33** The carbon cycle is shown.



Which row describes processes X, Y and Z?


|   | Х              | Y              | Z              |
|---|----------------|----------------|----------------|
| Α | respiration    | combustion     | photosynthesis |
| В | respiration    | photosynthesis | combustion     |
| С | photosynthesis | combustion     | respiration    |
| D | photosynthesis | respiration    | combustion     |

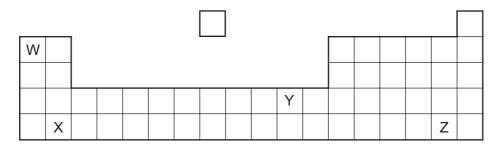

## 34 Which row shows the conditions used in the Contact process?

|   | temperature<br>/°C | pressure<br>/atm | catalyst          |
|---|--------------------|------------------|-------------------|
| A | 25                 | 2                | iron              |
| В | 25                 | 200              | iron              |
| С | 450                | 2                | vanadium(V) oxide |
| D | 450                | 200              | vanadium(V) oxide |

© UCLES 2019 0620/21/M/J/19

- 35 Which statement about elements in Group I and Group VII of the Periodic Table is correct
  - ? A Bromine reacts with potassium chloride to produce chlorine.
  - **B** Iodine is a monatomic non-metal.
  - **C** Lithium has a higher melting point than potassium.
  - **D** Sodium is more reactive with water than potassium.
- 36 Which statement about elements in Group VIII of the Periodic Table is correct?
  - **A** They all have a full outer shell of electrons.
  - **B** They all react with Group I elements to form ionic compounds.
  - **C** They are all diatomic molecules.
  - **D** They are all liquids at room temperature.
- **37** The diagrams show the structure of two substances used to make electrical conductors.






Which statement correctly describes X and Y?

- **A** X is a pure metal and Y is a compound.
- **B** X is a pure metal and Y is an alloy.
- **C** X is a solid and Y is a liquid.
- **D** X is harder and stronger than Y.

© UCLES 2019 0620/21/M/J/19

**38** The positions of elements W, X, Y and Z in the Periodic Table are shown.

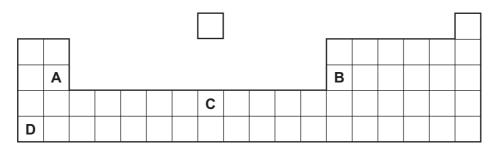


Which elements form basic oxides?

- A W, X and Y
- **B** W and X only **C** Y only
- **D** Z only

**39** Ethanoic acid is a weak acid.

Hydrochloric acid is a strong acid.


Which statements are correct?

- Ethanoic acid molecules are partially dissociated into ions.
- 1.0 mol/dm<sup>3</sup> ethanoic acid has a higher pH than 1.0 mol/dm<sup>3</sup> hydrochloric acid. 2
- Ethanoic acid is always more dilute than hydrochloric acid. 3
- Ethanoic acid is a proton acceptor.
- **A** 1 and 2
- **B** 1 and 3
- C 2 and 4
- **D** 3 and 4

**40** The properties of an element are shown.

| electrical conductivity | density | reaction with water              |  |  |  |  |
|-------------------------|---------|----------------------------------|--|--|--|--|
| high                    | low     | reacts violently with cold water |  |  |  |  |

Which element has these properties?



The Periodic Table of Elements

|       | =  | 2<br>He | helium<br>4   | 10            | Ne           | neon<br>20                   | 18 | Ā       | argon<br>40      | 36 | 궃  | krypton<br>84   | 54 | Xe       | xenon<br>131     | 98    | R              | radon           | 118    | Og        | oganesson          |
|-------|----|---------|---------------|---------------|--------------|------------------------------|----|---------|------------------|----|----|-----------------|----|----------|------------------|-------|----------------|-----------------|--------|-----------|--------------------|
|       | => |         |               | 6             | ш            | fluorine<br>19               | 17 | Cl      | chlorine<br>35.5 | 35 | Ā  | bromine<br>80   | 53 | Н        | iodine<br>127    | 85    | ¥              | astatine<br>-   | 117    | <u>s</u>  | tennessine<br>-    |
|       | 5  |         |               | 8             | 0            | oxygen<br>16                 | 16 | ഗ       | sulfur<br>32     | 34 | Se | selenium<br>79  | 52 | <u>e</u> | tellurium<br>128 | 84    | Ъо             | polonium        | 116    |           | livermorium<br>-   |
|       | >  |         |               | 7             | z            | nitrogen<br>14               | 15 | <u></u> | phosphorus<br>31 | 33 | As | arsenic<br>75   | 51 | S        | antimony<br>122  | 83    | Ξ              | bismuth<br>209  | 115    | Mc        | moscovium<br>-     |
|       | ≥  |         |               | 9             | ပ            | carbon<br>12                 | 14 | S       | silicon<br>28    | 32 | Ge | germanium<br>73 | 20 | S        | tin<br>119       | 82    | P <sub>o</sub> | lead<br>207     | 114    | F1        | flerovium<br>-     |
|       | =  |         |               | 2             | В            | boron<br>11                  | 13 | Αl      | aluminium<br>27  | 31 | Ga | gallium<br>70   | 49 | I        | indium<br>115    | 81    | 11             | thallium<br>204 | 113    | R         | nihonium<br>–      |
|       |    |         |               |               |              |                              |    |         |                  | 30 | Zu | zinc<br>65      | 48 | ပ္ပ      | cadmium<br>112   | 80    | Ę              | mercury<br>201  | 112    | ပ်        | copemicium         |
|       |    |         |               |               |              |                              |    |         |                  | 29 | Cn | copper<br>64    | 47 | Ag       | silver<br>108    | 62    | Αn             | gold<br>197     | 111    | Rg        | roentgenium<br>-   |
| Group |    |         |               |               |              |                              |    |         |                  | 28 | z  | nickel<br>59    | 46 | Pd       | palladium<br>106 | 78    | 풉              | platinum<br>195 | 110    | Ds        | darmstadtium<br>-  |
| J.Ö   |    |         |               |               |              |                              |    |         |                  | 27 | රි | cobalt<br>59    | 45 | 몬        | rhodium<br>103   | 77    | 'n             | iridium<br>192  | 109    | M         | meitnerium<br>-    |
|       |    | - エ     | hydrogen<br>1 |               |              |                              |    |         |                  | 26 | Ь  | iron<br>56      | 44 | Ru       | ruthenium<br>101 | 9/    | SO             | osmium<br>190   | 108    | ¥         | hassium<br>-       |
|       |    |         |               |               |              |                              |    |         |                  | 25 | M  | manganese<br>55 | 43 | ပ        | technetium<br>-  | 75    | Re             | rhenium<br>186  | 107    | В         | bohrium<br>–       |
|       |    |         |               | _             | pol          | ass                          |    |         |                  | 24 | ပ် | chromium<br>52  | 42 | Mo       | molybdenum<br>96 | 74    | ≥              | tungsten<br>184 | 106    | Sg        | seaborgium<br>-    |
|       |    |         | Key           | atomic number | atomic symbo | name<br>relative atomic mass |    |         |                  | 23 | >  | vanadium<br>51  | 41 | Q<br>N   | niobium<br>93    | 73    | ā              | tantalum<br>181 | 105    | Ор        | dubnium<br>–       |
|       |    |         |               |               | atc          | re.                          |    |         |                  | 22 | i= | titanium<br>48  | 40 | Ż        | zirconium<br>91  | 72    | Ξ              | hafnium<br>178  | 104    | ጟ         | rutherfordium<br>- |
|       |    |         |               |               |              |                              |    |         |                  | 21 | လွ | scandium<br>45  | 39 | >        | yttrium<br>89    | 57–71 | lanthanoids    |                 | 89–103 | actinoids |                    |
|       | =  |         |               | 4             | Be           | beryllium<br>9               | 12 | Mg      | magnesium<br>24  | 20 | Ca | calcium<br>40   | 38 | Š        | strontium<br>88  | 26    | Ba             | barium<br>137   | 88     | Ra        | radium<br>-        |
|       | _  |         |               | 3             | =            | lithium<br>7                 | 7  | Na      | sodium<br>23     | 19 | ×  | potassium<br>39 | 37 | &        | rubidium<br>85   | 55    | S              | caesium<br>133  | 87     | ιĽ        | francium<br>-      |

| 7.1 | ]      | lutetium<br>175     | 103 | ئ         | lawrencium<br>-     |
|-----|--------|---------------------|-----|-----------|---------------------|
| 70  | ΥÞ     | ytterbium<br>173    | 102 | 8         | nobelium<br>–       |
| 69  | H      | thulium<br>169      | 101 | Md        | mendelevium<br>–    |
| 89  | Щ      | erbium<br>167       | 100 | Fm        | fermium<br>-        |
| 29  | 웃      | holmium<br>165      | 66  | Es        | einsteinium<br>–    |
| 99  | ک      | dysprosium<br>163   | 86  | ర         | califomium<br>-     |
| 99  | Q<br>L | terbium<br>159      | 62  | 鮝         | berkelium<br>-      |
| 64  | В      | gadolinium<br>157   | 96  | CB        | curium              |
| 63  | Ш      | europium<br>152     | 92  | Am        | americium<br>-      |
| 62  | Sm     | samarium<br>150     | 94  | Pu        | plutonium           |
| 61  | Pm     | promethium<br>–     | 93  | ď         | neptunium           |
| 09  | PN     | neodymium<br>144    | 82  | $\supset$ | uranium<br>238      |
| 69  | ቯ      | praseodymium<br>141 | 91  | Ра        | protactinium<br>231 |
| 58  | S      | cerium<br>140       | 06  | ഥ         | thorium<br>232      |
| 22  | La     | lanthanum<br>139    | 68  | Ac        | actinium            |

lanthanoids

actinoids

The volume of one mole of any gas is  $24\,\mathrm{dm}^3$  at room temperature and pressure (r.t.p.).