FORM 3 CHEMISTRY WEEKEND PAPER1 24/06/2021

1.((a) When a non-luminous flame is not in use it should be turned into a luminous flame. Expl	ain why (2 marks)
	(b) Why does a non-luminous flame not produce soot?	(1 mark)
2.	A sample of urine from the students A, B and C suspected to have taken illegal drugs wer a chromatography paper alongside two from illegal drugs Y and Z. A chromatogram was methanol. The figure below shows the chromatogram.	e spotted onto
	Baseline Y Z A B C (a) Identify the student who had used an illegal drug	(1 mark)
	(b) Which illegal drug is less soluble in methanol	(1 mark)
	(c) Indicate on the diagram the solvent front.	(1 mark)
3.	Zinc metal was reacted with dilute Sulphuric (VI) acid and concentrated Sulphuric (VI) acid (a) Write an equation for each reaction. (i)	eid. (2 marks)
	(ii)	

	(b) Give a chemical test that can be done to identify the gas produced from the concentrated zinc metal.	acid and (1mark)
4.	A student prepared oxygen gas and intended to collect it when dry. He used the set up below and answer the questions that follow.	Study it
	Water Sodium peroxide Oxygen gas Syringe Liquid Y	
	Crystals (i) Identify liquid Y. Give a reason for your answer	(1mark)
		•••••
	(ii) Write the equation for the reaction in the first flask.	(1mark)
	(iii) Give two ways in which the reaction rate could be increased.	(1mark)
5.	Sulphur element was heated in a hard test-tube to a temperature of 160C. The test tube could without the sulphur liquid pouring out.	
	(i) State the colour observed	(1mark)
	(ii) Explain what happens to the sulphur such that it could be turned upside down without pour 160° C.	uring out at (2 marks)

6.	4 A nitrate salt was heated in a hard glass test tube. It completely decomposed into gaseous pro	ducts
	without leaving any residue.	
	(i) Identify the nitrate.	(1 mark)
	(ii) Give an equation for the decomposition of the nitrate.	(1mark)
	(iii) State two physical properties of the nitrogenous gas produced.	(1mark)
7.	40cm ³ of chlorine gas and 60cm ³ of hydrogen gas were mixed and exposed to sunlight.	
	(a) Find the total volume of the resulting gas mixture.	(2 marks)
	(b) When the resulting mixture was shaken with Sodium Hydroxide solution the volume redu	
	is the volume of the residual gas?	(1 mark)
8.	Lead (VI) oxide was reacted with concentrated hydrochloric acid, which was heated.	
	(i) Write an equation for the above reaction.	(1 mark)
	(ii) Suppose Manganese (IV) oxide was used instead of Lead (IV) Oxide in the above reaction	n what
	condition is necessary for the reaction to proceed?	(1mark)
	condition is necessary for the reaction to proceed:	
	(iii) Where would the above reaction be carried out and why?	(1mark)

		s shown below		Gas	X burns
Ory gas X	\ . *	<u>y</u>			
	† † 4				
(i) Identify gas X (1mark)))				(1mar
	• • • • • • • • • • • • • •	•••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
(ii) Was those one reseti-	n hotercas	god V and Cal	sium Ovidaa C	vo o rossor for	our onewer
(ii) Was there any reactio	n between g	gas X and Cald	cium Oxide? Gi	ve a reason for y	
					(1mai
			• • • • • • • • • • • • • • • • • • • •		
(iii) Write the expected ea	quation for				
(iii) Write the expected ed	quation for				
(iii) Write the expected ed	quation for	the reaction be	tween gas X ar		(II) Oxide (1ma
(iii) Write the expected eα		the reaction be	etween gas X ar	nd heated Copper	(II) Oxide (1ma
	ne atomic nu	the reaction be	etween gas X ar	nd heated Copper	(II) Oxide (1ma
The table below shows th	ne atomic nu	the reaction be	etween gas X ar	nd heated Copper	(II) Oxide (1ma
The table below shows th	ne atomic nu	the reaction be	etween gas X and an author and numbers and numbers.	nd heated Copper	(II) Oxide (1ma
Γhe table below shows th P,Q,R and S. The letters a	ne atomic nuare not actu	the reaction be	etween gas X and numbers and numbers.	nd heated Copper	(II) Oxide (1ma
The table below shows the P,Q,R and S. The letters a Atom/Ion Atomic number	e atomic nuare not actu	the reaction be	numbers and numbers. R 12	mbers of electron	(II) Oxide (1ma
The table below shows the P,Q,R and S. The letters a Atom/Ion Atomic number Mass number	P 12 24	the reaction be	aumbers and nuthe elements.	mbers of electron	(II) Oxide (1ma
The table below shows the P,Q,R and S. The letters a Atom/Ion Atomic number Mass number Number of electrons	P 12 24 12	the reaction be	aumbers and numbers elements. R	mbers of electron	r (II) Oxide (1ma
The table below shows the P,Q,R and S. The letters a Atom/Ion Atomic number Mass number	P 12 24 12	the reaction be	aumbers and numbers elements. R	mbers of electron	r (II) Oxide (1ma
The table below shows the P,Q,R and S. The letters a Atom/Ion Atomic number Mass number Number of electrons	P 12 24 12	the reaction be	aumbers and numbers elements. R	mbers of electron	(II) Oxide (1ma

((c) How	w many neutrons are in an atom of S?	(1mark)
	••••		
11.]	Both Ch	nlorine and Iodine are halogens.	
((a) Wha	at are halogens	(1mark)
	• • • • •		
	 (b) In to	erms of structure and bonding, explain why the boiling point of	
,	Iodiı		(2 marks)
			(=
2. ′	Two ele	ements of P and R have atomic numbers 4 and 16 respectively.	
((i) Usin	ng a dot (●) and cross (X) to represent the outermost electrons, d	lraw a diagram to show the
	bonc	ding between P and R.	(2marks)
	••••		
	••••		
	••••		
		What type of bonding does the resulting compound have?	(½mark)
	(b) V	What structure does the above compound have?	(½mark)
	••••		
	••••		
3.]	Ethene ı	undergoes self-addiction reactions to form a compound P.	
((i) Ident	ify compound P	(1mark)
((ii) State	e one problem of continued use of compound P on the earth. Give	ve a reason for your answer.
			(2marks)

Sulphate, Lead (II) Carbonate, dilute Nitric acid and distilled water.	(2marks)
(b) Which ionic equation that produced Lead (II) Sulphate in the above reactions. The set up below shows how small pieces of red Phosphorous are bested in Nitrogen (II)	(1mark)
The set-up below shows how small pieces of red Phosphorous are heated in Nitrogen (II Gas jar Deflagrating spoon Nitrogen (I) Oxide Burning Phosphorous) Oxide.
(a) Write an equation for the reaction which occur in the gas jar?	(1mark)
(b) Give the uses of Nitrogen (I) Oxide	(1mark)
(a) Compare the reactivity of fluorine with that of chlorine elements.	(2 marks)
(b) Compare the atomic radii of fluorine with that of chlorine. Give reason for your answ	(1 1)

17. An electric current was passed through a binary electrolyte as shown below. Study it and answer the questions that follow.

(i) Identify the anode and cathode in terms of (A) and (B)	(1mark)
(ii) State a condition missing in the set up to make the bulb to light.	(1mark)
(iii) Give the equation for the reaction at electrode (A).	(1mark)
18. A student wanted to prepare Carbon (II) Oxide gas using the set up below. Conc. Sulphuric (VI) acid Collected gas	
Ethanedioic acid Beaker Water	helve
(i) Will the method give him pure Carbon (II) Oxide gas? Give a reason for your answer ba set up shown.	sed on the (2 marks)

(ii)	Write the equation for the above reaction.	(1mark)
19.	The rate of diffusion of hydrogen gas is 6 times that of a certain alkane W. (i) Calculate the relative molecular mass of the alkane (R.A.M of $C=12$, $H=1$)	(2 marks)
	(ii) Work out the molecular formula of the alkane	(1mark)
20.	0.24g of a divalent metal M dissolve in 50cm ³ of 0.25M Sulphuric (VI) acid. The resulting s required 5.0cm ³ of 1.0M Sodium Hydroxide for complete neutralism. Determine the relative mass of M.	olution
21	Copper metal powder was thoroughly mixed with the same amount of Zinc (II) Oxide. The	
21.	Copper metal powder was thoroughly mixed with the same amount of Zinc (II) Oxide. The related together strongly, in a bottle top. State the observations made when the mixture was recooling. Was there any reaction between the two chemicals? Give a reason for your answer.	not and after
22.	Study the flow chart below and answer the questions that follow. Na ₂ CO ₃ Soda lime Step 1 Excess Cl ₂ U.V Step 2 CCl ₄	
	(a) Identify W and B.	(2marks)
	R	

(b) What name is given to the type of halogenation/chlorination reaction in Step 2.	(1mark)
	•••••
23. In an experiment, 50% concentrated Nitric (V) acid (50% concentrated acid mixed with	h 50% water) by
volume was reacted with Zinc metal in a round bottomed flask as shown below. The g	as evolved was
collected over water.	
Dilute Nitric acid Gas X Zinc granules	Vater
(i) Identify gas X	(1mark)
	•••••

(i) Identify gas X	(1mark)
(ii) Write an equation for the formation of gas X	(1mark)
(iii) State two physical properties of gas X	(1mark)

24. The diagram below shows the set up that was used to prepare and collect Sulphur (IV) Oxide gas.

After one day, a gas was found to have collected in the test-tube.

(a) Identify the gas.	(1mark)

(b)	What will happen to the PH of the solution in the beaker after one day? Give an explanation	•••••
26.	A broken metallic door piece made of Iron and Aluminium was dissolved in excess dilute hydacid. The resulting Iron (II) ions were titrated with 20cm ³ of 0.4 Molar Potassium Manganate solution. If the original mass of the piece was 2.8g, determine the percentage of Al in it given equation below.	(VII)
	(Fe = 56, Al = 26) $5Fe^{2+}_{(aq)} + MnO_4^{-}_{(aq)} + 8H_{+(aq)}$ $5Fe^{3+}_{(aq)} + Mn^{2+}_{(aq)} + 4H_2O_{(1)}$	
27		
27.	A blue solid was heated in a hard glass test tube. It decomposes giving out a black residue an A colourless gas. The colourless gas evolved forms a white precipitate with a drop of lime was glass rod at the mouth of the test tube. The black residue was dissolved in dilute hydrochloric give a blue solution.	ater on a
	(i) Identify the blue solid	(½mark)
	(ii) Identify the colourless gas	(½mark)
	(iii) Write the equation for thermal decomposition of the blue solid.	(1mark)
	(iv) State the observations that would be observed incase ammonia solution was added into 2 the blue solution as follows.	cm ³ of
	(a) Three drops	(½ mark)
	(b) Excess ammonia solution	(½ mark)