Name	File Number	Class
------	-------------	-------

121/2

MATHEMATICS Paper 2 2½ Hours

<u>SET 1</u>

FORM 3

Kenya Certificate of Secondary Education (K.C.S.E)

Instructions to candidates

- 1. Write your name, admission number and class in the spaces provided above.
- 2. The paper contains two sections: Section I and Section II.
- 3. Answer <u>ALL</u> the questions in **Section I** and <u>ANY FIVE</u> questions from **Section II**.
- 4. All working and answers must be written on the question paper in the spaces provided below each question.
- 5. Marks may be awarded for correct working even if the answer is wrong.
- 6. Negligent and slovenly work will be penalized.
- 7. Non-programmable silent electronic calculators and mathematical tables are allowed for use.

For Examiner's use only

Section I

1	2	3	4	5	6	7	8	9	1	1	1	1	1	1	1	Т
									0	1	2	3	4	5	6	ο
																t
																а
																I

17	18	19	20	21	22	23	24	Total		
									Grand Total %	

This booklet contains 15 printed pages. Please confirm that all the pages exist and are properly printed before starting the exam.

Section I (50 marks) Answer <u>all</u> the questions in this section

1. Solve for x in the equation Sin $(4x - 10)^\circ$ – Cos $(x + 60^\circ)^\circ$ = 0	(3 marks)
2. (a) Find the greatest common divisor of the term $9x^3y^2$ and $4xy^4$.	(1mark)

(b) Hence factorize completely the expression $9x^3y^2 - 4xy^4$ (2marks)

3 The area of a rhombus is 120 cm². Given that one of its diagonals is 24cm, calculate the perimeter of the rhombus.
 (3 marks)

4. Given that $\overline{\mathbf{OA}}$ = 2 i + 3 j and $\overline{\mathbf{O}}$	Ϊ 3i – 2j. Find the magnitu	ude of AB to one decimal	place.	(3marks)
---	-----------------------------	--------------------------	--------	----------

5. Given that $log_{10}7 = 0.8451$ and $log_{10}6 = 0.7782$. find $log_{10}25.2$

(4 marks)

6. The angle subtended by the major arc at the centre of the circle O is twice the angle subtended by the minor arc at the centre. If the radius of the circle is 3.5cm, find the length of the minor arc. $(Take\pi = \frac{22}{7})$ (3 Marks) 7. Simply and leave answer in surd form.

$$\frac{-9}{\sqrt{13}+\sqrt{3}} - \frac{5}{\sqrt{3}-\sqrt{13}}$$

(4 marks)

8. A line L is perpendicular to 3y - 4x = 7. Determine the acute angle between L and the x-axis. (3marks)

9. The figure below is a velocity – time graph for a car.

a) Find the total distance travelled by the car.

(2marks)

b) Calculate the deceleration of the car.

10. The figure below shows triangle PQR in which PR = 12cm. T is a point on PR such that TR =4cm. Line ST is parallel to QR. If the area of triangle PQR is 336cm², find the area of the quadrilateral STQR.

(3 marks)

11. In the diagram below, P, Q and R are points on the circumference of a circle. PQ = 10 cm, PR = 12 cm and QR = 8 cm.

Find the radius of the circle to 2 decimal places.

(3 marks)

5

SET 1

(1marks)

12. Solve for *x* in the equation: $2 + \log_7(3x - 4) = \log_7 98$

(3 marks)

(3 marks)

Form the inequalities represented by region R.

14. From the roof of a house, a boy can see an avocado tree which is 20m away from the house. He measures the angle of elevation of the top of the tree as 21° and the angle of depression of the bottom of tree as 31°. Find the height of the avocado tree.

15. Find the percentage error in calculating the volume of the cuboid whose dimensions are 8.2cm by 6.2cm by 5.7cm. (3 marks)

16. A bus moving at a speed of 80km/h is being overtaken by a car moving at 100km/h in a clear section of a road. Given that the bus is 21m long and the car is 4m long. How much time (in seconds) will elapse before the car can completely overtake the bus?

SECTION II: (50 MARKS) Answer any five questions from this section

17. (a) Complete the table below for the function $y = Sin 2x^0$ and $y = 3 Cosx^0$ for $-180^0 \le x \le 180^0$.

									(2 ma	rks)			
X ⁰	-	-	-	-	-	-	0	3	6	9	1	1	1
	1	1	1	9	6	3		0	0	0	2	5	8
	8	5	2	0	0	0					0	0	0
	0	0	0										
Sin	0			0	-				0	0			0
2					0								
х									8				
0					8				7				
					7								
3C	-	-		0		2					-		
О	3	2									1		
S						6							
х		6									5		
0													

On the same axes, draw the graph of y = Sin $2x^0$ and y = $3 \cos^0 x^0$ for $-180^0 \le x \le 180^0$. (b) (5marks) (c) Use the graph in (b) above to find: (i) the value of x such that 3 Cos x^0 - Sin $2x^0 = 0$. (1 mark) (ii) the difference in value of y when $x = 45^{\circ}$. (1 mark) Range of values of x such that 3 Cos x > 1.5. (1mark) (iii)

SET 1

18. (a)Complete the table below for the equation $y = x^2 + 3x-6$, given $-6 \le x \le 4$.

(2marks)

(c) Use your graph to solve the quadratic equation. i) $x^2 + 3x - 6 = 0$

(1mark)

ii) $x^2 + 3x - 2 = 0$

(3marks)

19.a) An enlargement with centre (-2, 3) maps (1, 0) onto (4, -3). What is the image of (-3, -6) with the same centre of enlargement. (4marks)

b). If
$$\frac{9}{98}x^2 - \frac{3}{28}x + \frac{3}{16} + B$$
 is a perfect square. Find the value of B. (3 marks)

c. If Cos
$$\theta^{o} = \frac{-15}{17}$$
 and θ is obtuse, find without using tables the values of

i) $\tan \theta^{\circ}$. (2marks)

ii) sin (180 - θ)^o

(1mark)

20. The figure below represents a quadrilateral piece of land PQRS divided into three triangular plots. The length QT and RS are 100m and 80m respectively. Angle PQT=30⁰, angle PRT =45⁰ and angle PRS =100⁰.

(a)Find to four significant figures

(i) the length of PT.

(ii) The length of PS.

(iii) the perimeter of the piece of land.

The Examiner

(3marks)

(2marks)

(2marks)

(b) The plots are to be fenced with five strands of barbed wire leaving an entrance of 2.8m wide to each plot. The type of marked wire to be used is sold in rolls of length of 480m.Calculate the number of rolls of marked wire that must be bought to complete the fencing of the plot. (3marks)

21. Musa obtained a loan in which the rate of interest was charged at 3.5% quarterly. He cleared this loan by paying Ksh: 24,805 at the end of 1½ years.

(a) How much was the loan if the rate was on:

(i) Simple interest.

(ii)Compound interest.

(b) Calculate the difference between simple and compound interest.

(4 marks)

(2 marks)

(4 marks)

- **22.** Two circles, centre A and B, have radii 4cm and 8cm respectively. If the two circles share a common chord 6cm long, (Taking π = 3.142).
- (a) Calculate the area of the common region.

(6 marks)

(b) After constructing the two circles, each separately on a piece of paper, a student cut out a minor segment on each circle along the chord 6cm and joined the major segments along the chords Find the perimeter of the figure made.
 (4 marks)

23. The following data was obtained for masses of some pregnant women in a maternity clinic

Mass x	1.5 <u><</u> x<5.5	5.5 <u><</u> x<7.5	7.5 <u><</u> x<13.5	13.5 <u><</u> x<15.5	15.5 <u><</u> x<20.5
(kg)					
No. Of	16	20	18	14	15
wom					
en					

(a)Represent the information in the table above on a histogram, on the graph paper provided.

(6marks)

- (b) Use the information in the table above to estimate:
- (i) the mean mass.

(2marks)

(ii) the median mass.

(2marks)

- 24. a) A room is constructed such that its external length and breadth are 7.5m and 5.3m respectively.
 The thickness of the wall is 15cm and its height is 3.3 metres. A total space of 5 m² is left for doors and windows on the walls.
- a) Calculate the volume of:
- i) the materials needed to construct the walls with the doors and windows. (4 marks)

ii) the materials needed to construct the walls without doors and windows. (2 marks)

b) The blocks used in constructing the walls are 450mm by 200mm by 150mm. 0.225m³ of cement is used to join the blocks. Calculate the number of blocks. Calculate the number of blocks needed to construct the room.
 (4 marks)

<u>SET 1</u>

MATHS PAPER	2 MARKING	SCHEME.
--------------------	-----------	---------

1	Sin (4x + 10)° = sin (90 – (x + 60)°		
	$4 \times 10^{\circ} = 90 - x - 60^{\circ}$	Μ	
	4x + x = 20	1	
	5x = 20	М	
	$y - A^0$	1	
	X - 7	-	
		•	
		A	
		1	
		3	
		m	
		k	
		s	
2	$\sim CD of 9x^3 y^2$ and $4xy^4$		
2	a) $rv^2 = 9r^3v^2 = 4rv^4$		
	$\frac{1}{9r^2}$ $\frac{4v^2}{4v^2}$	•	
	CCD	А	
	$GLD = xy^{-1}$	1	
	b) $9x^3y^2 - 4xy^2 = xy^2(9x^2 - 4y^2)$		
	$9x^2 - 4y^2$		
	$9x^2 - 4y^2 = (3x + 2y)(3x - 2y)$	М	
	$= xy^{2}(3x + 2y)(3x - 2y)$	1	
		Δ	
		1	
		2	
		3	
		m	
		k	
		S	
3	Area of themplus $-\frac{1}{2}$ product of diagonals		
	Area of mollibus $-\frac{1}{2}$ product of diagonals		
	1	М	
	$120 = \frac{1}{2} \times 24 \times x$	1	
	2^{nd} disconcluse 10	_	
	$y = \sqrt{5^2 + 12^2} = 13$ cm	N.4	
	Perimeter = 13 x 4	IVI	
	-52 cm ²	1	
		А	
		1	
		3	
		m	
		k	

		S	
4	AB = (3i - 2j) - (2i + 3j) = i - 5j	М	
	$\left \overrightarrow{AB} \right = \sqrt{1^2} + (-5)^2 = \sqrt{26} = 5.1 \text{ units}$	2	
		А	
		1	
		3	
		m	
		k	
		S	-
5	$log_{10} = 0.8451$		
	$log_{10} = 0.7/82$		
	$log_{10}(25.2) = log_{10}\left(\frac{0.37}{10}\right)$	N.4	
	$-2lag_{10}6 + lag_{10}7 - lag_{10}10$	1	
	= 2(0.7782) + 0.8451 - 1	1	
	$-1.5564 \pm 0.8451 = 1$	м	
	-1 4015	1	
	-1.4015	M	
		1	
		А	
		1	
		4	
		m	
		k	
		S	
6	2x + x = 360		
	$x = 120^{0}$	M	
	x - 120	T	
	$\frac{120}{2} \times \frac{22}{2} \times 2 \times 3.5$		
	360 7	м	
	$\frac{1}{2}$ x 22 x 2 x 0.5= 7.33cm	1	
	3	_ <u> </u>	
		А	
		1	
		3	\square
		m	
		k	
		S	

7	$-9(\sqrt{3}-\sqrt{13})-5(\sqrt{3}+\sqrt{13})$	
	$(\sqrt{3} + \sqrt{13})(\sqrt{3} - \sqrt{13})$	M
	$-9\sqrt{3}+9\sqrt{13}-5\sqrt{3}-5\sqrt{13}$	T
	$=\frac{-1}{3-13}$	
	$4\sqrt{13} - 14\sqrt{3}$	М
	$=\frac{-10}{-10}$	1
	$7\sqrt{3} - 2\sqrt{13}$	
	$=\frac{1}{5}$	1
		1
		А
		1
		4
		k
		S
8	3y = 7 + 4x	
	$y = \frac{7 + 4x}{1 + 1}$	М
	$\frac{3}{1}$	1
	$IdH \Phi = 7/3$ tangent A = 53.13°	М
		1
		А
		1
		3
		m k
		S
9	(a) D = ½ (24 + 16)80	M
		1
	=1,600 m	
	$(b) = -\frac{B0}{2}$	A 1
		1
	= 20m/s ² (deceleration)	
		A
		2
		s m
		k
		S

$A . S . f = \left(\frac{3}{2}\right)^2$	
$A.S.J = \left(\frac{1}{2}\right)$	
$\frac{336}{3} = \frac{9}{3} \Rightarrow A = 149$	
A 4 Area of avadrilate ral	
$= 336 - 149^{-14}$	
$= 186^{-2} \times cm^{-3}$	M
	А
	1
	3
	k m
	s
1 $\cos P = \frac{10^2 + 12^2 - 8^2}{10^2 + 12^2 - 8^2}$	
$2 \times 10 \times 12$	M
$P = 41.41^{\circ}$	
$2R = \frac{8}{\sin 41.41^{\circ}}$	
R = 6.05	M
	1
	А
	1
	3
	m k
	S
$\begin{bmatrix} 1 \\ 2 = \log \left(\frac{98}{98} \right) \end{bmatrix}$	
$(2 - 10g_7(3x - 4))$	N4
$\frac{98}{$	1
3x-4	
2 = 3x - 4	M
x = 2	1
	А
	1
	3
	m v
	S

	2	-	Т
1	$v < \frac{-3}{2}\gamma + 3$	В	
	5 2 2	1	
	$v \leq \gamma + 3$		
	$\gamma = \chi$	В	
	$y \ge -2$	1	
		В	
		1	
		3	
		m	
		k	
		r c	
		5	
1	1		
	$T_{an} 21^{o} - \chi$		
	$1 an 21 - \frac{20}{20}$		
	$y = 20 \tan 21$		
	121° and 3077°	M	
	31° = 7.6/7		
	$T_{a} = 31 - \frac{y}{2}$	1	
	$1 \mu n 51 - \frac{1}{20}$		
	$v = 20 \tan 31$		
	- 12 017	М	
	= 12.017	1	
	\therefore Height of tree = χ + y	T	
	= 7.677 + 12.017		
	= 19.694		
		А	
		1	
		2	-
		5	
		m	
		k	
		S	
1	0.05 0.05 0.05	М	
_	$K \cdot E = \frac{1}{82} + \frac{1}{62} + \frac{1}{57}$	1	
	- 0.02202	1	
	- 0.02255		
	P F = 0.02293 x 100		1
		Μ	1
	= 2 293	1	1
			1
		Δ	1
		~ 1	
		1	_
		3	1
		m	1
		k	
		S	1
1	$r_{s} = 100 - 20 km/b$	5	+
–	$1.5 - 100 - 20 \times 1000$		1
	$\rightarrow \frac{1}{60 \times 60}$		
The	Examiner 20 SET 1		

т:	$e = \frac{(4+21)}{\frac{50}{9}}$														М
IIr	ne=4.55														
															A 1
															3 m k
χº	- 1 8 0	- 1 5 0	- 1 2 0	- _ (- 6 0	- 3 0	0	3	6	0 9	1 2 0	1	5 0	1 8 0	3
Sin 2 X	0	0 8 7	0 8 7	0	- 0 8 7	- 0 8 7	0	0	0 8 7	0 8 7	- 0 8 7	-	0 8 7	0	B 1
3 C ο s χ	- 3 0 0	- 2 6 0	- 1 5 0	0	1 5 0	- 2 6 0	3 0 0	2	1 6 0	0 5 0	- 1 5 0	-	2 6 0	- 3 0 0	<u>B</u> <u>1</u>
			5/				~								
			- 15	*	3	*	8	00 A	- ad	20 II	2 ×				

(i) -90° or 90°	B1	
(ii) 2.1 \pm 1 = 1.1 \pm 0.1	B1	
(iii) -60°< x< 60°	B1	

	x + 2 = -2 $x = -4$		
	x + 2 = -2 $x = -4y - 3$	M1	
	$\frac{-6}{-6} = 2$		
	y - 3 = -18 $y = -15$	A1	
	Image = (-4, -15)		
	b) $b^2 = 4ac$		
	$(-3)^2$ (9(3))	M1	
	$\left \frac{3}{29} \right = 4 \left \frac{3}{29} \right \frac{3}{16} + B \left \right $		
	(28) $(98(16)))$		
	9 - (27 + 9B)	M1	
	$\frac{1}{784} = 4\left(\frac{1}{1568} + \frac{1}{98}\right)$		
	36B 9 108		
	$\frac{300}{09} = \frac{3}{794} - \frac{100}{1569}$		
	96 764 1306	A1	
	$\frac{30}{30}B = \frac{70500}{300}$		
	98 1229312		
	$B = \frac{5}{2}$		
	~ 32		
	þ		
	17		
	8		
	15		
	$172 15^2 0$		
	$\sqrt{17 - 15} = 8$	B1	
	a) $\tan \theta = -\frac{8}{2}$		
	15	Al	
	$1 = \frac{1}{2} (180 - 0) = \frac{8}{2}$		
	θ (180 - θ) = Sm θ = $\frac{1}{17}$	A1	
		10m	
		k	
	(i)DT-100ton 20	S NA1	
0	=57.74	AI	
•	(ii)Length PR= $\frac{57.74}{1.15}$	N 4 4	
	sm 45	IVIT	
		N 4 1	
	$PS^{2}=81.66^{2}+80^{2}-2\times81.66\times80$ cos 100		
	PS=123.8m	AI	
	(III)P1=1R=5/./4cm		
	$PQ = \frac{100}{100}$	N 4 1	
	cos30		
	=115.5m		
	Perimeter =115.5+100+57.74+80+123.8		
	=477.04	A1	

	=477.0m (4sf)				
	b) Total perimeter =477.0+5	7.74+81.66			
	=616.4m				
	Perimeter of open area =2.8	×3		B1	
	=8.4m				
	Fenced perimeter =616.4-8.4			M1	
	=608				
	No of rolls= $\frac{608 \times 5}{1000}$				
	480			A1	
	=6.333				
				10	
				m L	
				ĸ	
2	(a)(i) Interest periods = 6	(for 6 periods)		5	
2					
-	Total interest % = 6×3.5 = 21%			R1	
•				DI	
	$\frac{121}{P} = 24805$			M1	
	100				
	$P = \frac{24805 \times 100}{100}$	= sh	20500	M1	
	121	<u></u>	.20000	A1	
	(ii) $A = P\left(1 + \frac{r}{r}\right)^n$				
	100)				
	$24805 - p(1 + 3.5)^6 - p(4.025)$	<i>p</i> _ 24805			
	$\left(\frac{24000 - F(1 + \frac{1}{100})}{100} \right) = F(1.035)$	$r = \frac{1}{(1.035)^6}$	-	M1	
		sh.20190			
				M1	
	(b) S.I. = $24805 - 20500 = 4305$				
	C.I. = 24805 – 20190= 4610			AI	(h atk
	Difference = 4610 – 4305	sh.305		N // 1	(DOTN
				IVIT	roct
					rest
					5)
				Δ1	
				//±	
					1

2 2			
	$\sin \theta = \frac{3}{8} \Longrightarrow \theta = 22.02^{\circ}$ $2\theta = 44.04^{\circ}$ $\sin \theta = \frac{3}{4} \Longrightarrow \theta = 48.59^{\circ}$	B1	√ angl e
	$2\theta = 97.18^{\circ}$	B1	
	area of circle = $\left\{ \left(\frac{44.04}{360} \times 3.142 \times 8 \times 8 \right) - \left(\frac{1}{2} \times 8 \times 8Sin44.04 \right) \right\}$	M1	√ angl e
	$+\left\{ \left(\frac{97.18}{360} \times 3.142 \times 4 \times 4\right) - \left(\frac{1}{2} \times 4 \times 4Sin97.18\right) \right\}$	M 1	area in one circl
	=(24.60 - 22.25) + (13.57 - 7.937)	M1	е
	=2.35 + 5.633 = 7.983cm ²	A1	are in the oth
	b) $arc \ length = \frac{262.82}{360} \times 3.142 \times 16 + \frac{315.92}{360} \times 3.142 \times 8$ = 36.70 + 22.06 = <u>58.76cm</u>	M1 M1 M1	er circl e
		A1	single valu es
			1 st arc leng th 2 nd arc

								leng th single valu es
							10 m k s	
2 3 .			5 13-5 17 5 Misses (22	775 195 20			✓B 1 ✓B 1 ✓B 1	Axes f.d colu mn c.f $\sum fx =$
	Boundaries	Х	f	fx	cf	f.dev	√В	<u>ک</u> 848
	1.5 – 5.5	3.5	16	56	16	4	1 ✓ D	Allcorr
	5.5 - 7.5 7 5 - 13 5	0.5 10 5	20	13U 189	30 54	3	2	ect
	13.5 -15.5	14.5	14	203	68	7	✓B	bars
	15.5 – 20.5	18.0	15	270	83	3	1	bars
	b) (i) mean = $\frac{\sum_{i=1}^{3}}{\sum_{i=1}^{3}}$ = $\frac{848}{83}$ = 10.2167kg	$\frac{fx}{f}$		1		<u> </u>		corr ecty plot ted
The E	 Examiner			26		SET 1		

	(ii) median = $\frac{7.5 + 42 - 36 \times 6}{2}$		
	18		
	= 9.5kg	M1	
		AI	
		M1	Substiu
		A1	tion
			Answer
			C.A.U
		10m	
2	2 - 15 - 0.15	10111	
2 4	100		
	i) outer $v = 2(7.5 + 5.3)3.3m^3$		
	$= 84.48m^3$		
	inner $v = 2(72 + 5)33$		
	$-80.52m^3$	B 1	
	-60.52m	DI	
	V of material = 84.48 - 80.52m	M1	
	$= 3.96m^3$		
	(ii) Volume of the door and windows = 5 x 0.15 = 0.750 m^3	M1	
	Volume wall = 3.96 – 0.750	M	
	$= 3.21 \text{ m}^3$	1	
	b) 1m = 1000mm		
	volume of a block = $\frac{450}{100} \times \frac{200}{100} \times \frac{150}{1000}$		
	1000 1000 1000	A1	
	$= 0.45 \times 0.2 \times 0.15$ = 0.0135m ³	N / 1	
	Number of block = $3.21 - 0.225 \text{m}^3$		
	0.0135	A1	
	$= 221\frac{1}{2}$		
	- 221 9		
		M1	
		N/1	
		1417	
		M1	
		A1	

27