Name	File Number	Class
121/1		
MATHEMATICS		
Paper 1		
2½ Hours		

SET 1 FORM 3

Kenya Certificate of Secondary Education (K.C.S.E)

Instructions to candidates

- 1. Write your name, admission number and class in the spaces provided above.
- 2. The paper contains two sections: **Section I** and **Section II**.
- 3. Answer ALL the questions in Section I and ANY FIVE questions from Section II.
- 4. All working and answers must be written on the question paper in the spaces provided below each question.
- 5. Marks may be awarded for correct working even if the answer is wrong.
- 6. Negligent and slovenly work will be penalized.
- 7. Non-programmable silent electronic calculators and mathematical tables are allowed for use.

For Examiner's use only

Section I

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total

17	18	19	20	21	22	23	24	Total		
									Grand Total %	

This booklet contains 12 printed pages. Please confirm that all the pages exist and are properly printed before starting the exam.

Section I(50 marks)

Answer <u>all</u> the questions in this section

1.	9, 15, 17, 16, 7, 20, 21, 15, 10, 1 Determine:	match.
		(1 mark)
	(b) the median.	(1 marks)
2.	The coordinates of P and Q are $(-2, 6)$ and $(4, -2)$ respectively. Find the equation of a perbisector of line PQ, in the form $y = mx + C$.	pendicular (4 marks)
3.	The marked price of a car in a dealer's shop was Ksh. 450,000/=. Magari bought the car a discount. The dealer still made a profit of 13%. Calculate the amount of money the dealer still fact the car.	had
	paid for the car.	(3marks)

1	Simplify	$12x^2 + ax - 6a^2$			
4.		$9x^2 - 4a^2$			

(3marks)

Solve for m in the equation: $3^{4(m+1)} + 3^{4m} = 246$ 5.

$$3^{4(m+1)} + 3^{4m} = 246$$

(3marks)

6.

Using tables evaluate.
$$\frac{1}{34.52} + \sqrt[3]{0.787} + (0.934)^{3}$$

(3 marks)

7. Evaluate without using a calculator
$$\frac{\frac{2}{3}\left(1\frac{3}{7} - \frac{5}{8}\right)}{\frac{3}{4} + 1\frac{5}{7} \div \frac{4}{7} \text{ of } 2\frac{1}{3}}.$$
 (3marks)

The exterior angle of a regular polygon is 24°. Determine the sum of the interior angles. 8.

(3marks)

9. The figure below represents an opened collar cloth, find the distance round it. (Take $\pi = 3\frac{1}{7}$)

(3marks)

10. An American tourist arrives in Kenya with 1000 US\$ and converted the whole amount into Kenyan shilling. He spent sh. 40000 and changed the balance to Sterling pounds before leaving for United Kingdom. A Kenyan bank buys and sells foreign currencies as shown.

Buying (in Kshs) Selling (in ksh)

1 US dollar 84.2083 84.3806 1 Sterling pound 134.7941 135.1294

Calculate the amount he received to the nearest sterling pound. (3 marks)

11. Katu is now four times as old as her daughter and six times as old as her son. Twelve years from now, the sum of the ages of her daughter and son will differ from her age by 9 years.

What is Katu's present age? (3 marks)

Solve the following inequality and show your solution on a number line. (3 marks) $4x - 3 \le \frac{1}{2}(x + 8) < x + 5$

13.	A farmer has a piece of land measuring 840m by 396m. He divides it into square plots of size. Find the maximum area of one plot.	equal (3marks)
14.	Using a ruler and a pair of compasses only, construct a triangle ABC in which BC = 5cm, ABC = 75° and ACB = 60° . From A drop a perpendicular to BC and measure its length to nearest mm.	angle the (4 marks)
15.	A two digit number is such that the sum of the digits is 11. When the digits are reversed, to new number exceeds the original number by 9. Calculate the original number.	he (4marks)
16.	Two similar containers have masses 256kgs and 128kgs respectively. The surface area of smaller container is 810 cm ² . What is the area of the corresponding surface of the large co	the ontainer? (3marks)

5

The Examiner

SET 1

SECTION II(50 MARKS)

Answer any FIVE questions in this section

17. The figure below is a frustum of a solid cone of base radius 48cm and top radius 16cm. The height of the frustum is 21cm.

Taking by as $\frac{22}{7}$, calculate:

a) The height of the solid cone.

(2marks)

b) The volume of the solid frustum.

(3marks)

c) The total surface area of the frustum.

(5marks)

18. The figure below shows a circle centre O in which QOT is a diameter. <QTP = 46° , TQR = 75° and SRT = 38° , PTU and RSU are straight lines.

R S U

Calculate the following angles giving a reason in each case.

 $(a) \qquad < RST$ (2marks)

(b) <SUT (2marks)

c) <PST (2marks)

d) Obtuse < ROT (2marks)

e) <SQT (2marks)

19.(a) A rectangular tank of base 2.4m by 2.8m and a height of 3m contains 3600 litres of water initially. Water flows into the tank at the rate of 0.5 litres per second.

Calculate:

(i) The amount needed to fill the tank.

(2marks)

(ii)	The time in hours and minutes required to fill.	(3marks)
b)	Pipe A can fill an empty tank in 3 hours while pipe B can fill the same tank in 6 h tank is full, it can be emptied by pipe C in 8 hours. Pipes A and B are opened at the tank is empty. If one hour later pipe C is also opened, find the total time taken to fill the same tank is empty.	same time when the
20. (a)	monthly salary of Ksh.12000. In a certain month, he sold 360 pairs of shoes at K pair.	
b)	The following month, his monthly salary was increased by 10%. His total earning were Ksh.17600. Calculate The total amount of money received from the sales of the shoes that month.	gs that month (5 marks)

(ii)	The number of pairs of shoes sold that month.	(2 marks)
21. (a)	The distance between towns M and N is 280km. A car and a lorry travel from M average speed of the lorry is 20km/h less than that of the car. The lorry takes 1h 1 than the car to travel from M to N. If the speed of the lorry is $x \text{ km/h}$, find $x \text{ km/h}$	
(b)	The lorry left town M at 8.15am. The car left town M later and overtook the lorry Calculate the time the car left town M.	at 12.15pm. (4marks)

22.	The table below sho	ws measurements.	in metres n	nade by su	rvevor in his	field book.
<i></i>	THE LAUTE DELOW SHO	ws incasurcincins.	in mones i	made by su	n ve yor in ms	ncia book.

	F	
	420	
G 100	380	D70
	300	C100
	220	E40
H60	140	
	80	B60
	A	

a) Using an appropriate scale draw the region.

b) Find the area in hectares of the filed. (5 marks)

(5 marks)

23	A, B, C and D are four schools where B is 84km north of A and C is on a bearing A at a distance of 60km. D is on a bearing of N20°W from C and at a distance of 3 Use a scale drawing to show relative positions of A,B,C and D using a scale of 1c 10km.	30km.
(a)	Find; the distance and bearing of B from C.	(2marks)
(b)	the bearing and distance of D from B.	(2marks)
(c)	the bearing of A and D.	(1mark)

	A company is to construct a parking bay whose area is 135m^2 . It is to be covered by of uniform thickness of 150mm. To make the slab, cement, ballast and sand are sir masses are in the ratio 1: 4: 4. The mass of 1m^3 of dry slab is 2500kg. Calculate volume of the slab.	to be mixed so that
ii)	the mass of the dry slab.	(1 mark)
iii)	the mass of cement to be used.	(2 marks)
b)	If one bag of cement is 50kg, find the number of bags to be purchased.	(2 marks)
c)	If a lorry carries 7 tonnes of sand, calculate the number of lorries of sand to be put (3 marks)	rchased.

SET 1

MATHS PAPER 1 (MS) MARKING SCHEME.

1.	(a) 15	A1	
	(b) $\frac{15+15}{2}=15$		
	2	A1	
2.	$m_{PQ} = \frac{-2-6}{42} = \frac{-4}{3}$		
	$m_{PQ} = 42 = 3$		
	$\therefore Gradient \ of \ \perp = \frac{3}{4}$	M1	
	$Mid - point \left(\frac{-2+4}{2}, \frac{6-2}{2}\right) = (1, 2)$	N41	
	$Mia - point \left(\frac{1}{2}, \frac{1}{2}\right) \equiv (1, 2)$	M1	
	$\frac{y-2}{\chi-1} = \frac{3}{4}$	M1	
		INIT	
	$y = \frac{3}{4}\chi + \frac{5}{4}$	A1	
	4 4		
3	100% = 450,000	4mks	
3	93% ?		
	93 x 450000		
	100 = 418,500	M1	
	113% = 418500		
	100% ?	M1	
	100 x 18500		
	113 = 370353.9823	A1	
		3mks	
4.	$\frac{(3x-2a)(4x+39)}{(3x+2a)(3x-2a)}$	M2	
	(3x + 2a)(3x - 2a)		
	$= \frac{3x + 3a}{3x + 2a}$	A1	
		3mks	
5.	34m 34 + 34m = 246	M1	
	Let 34m = y 81y + y = 246		
	82y = 246	M1	
	y = 3		
	34m = 31, m = ¼	A1	
	1	3mks	
6	$\frac{1}{34.52} + \sqrt[3]{0.787} + (0.934)^3$		
	$\frac{1}{3.452 \times 10} + \sqrt[3]{\frac{787}{1000}} + \left(\frac{9.34}{10}\right)^2$	N44	
	1221	M1	
	0.2901 x 0.1 + 9.233 x 0.1 + 814.8 x 0.001	M1	
	0.02901 + 0.9233 + 0.8148	A1	
	= 1.76711		
		3mks	

_			
7.	$\frac{2}{3}\left(\frac{10}{7} - \frac{5}{8}\right)$		
	$\frac{3(78)}{\frac{3}{4} + \frac{12}{7} \div \left(\frac{4}{7} \times \frac{7}{3}\right)}$		
	$= \frac{\frac{2}{3} \left(\frac{80 - 35}{56}\right)}{\frac{3}{4} + \frac{12}{7} \div \frac{4}{3}}$		
	$=\frac{3(56)}{3(12)}$	M1	
	$\frac{3}{4} + \frac{12}{7} \div \frac{4}{3}$		
	2 45 15		
	$=\frac{3^{5}6}{3^{12}}=\frac{28}{300}$	M1	
	$= \frac{\frac{2}{3} \times \frac{45}{56}}{\frac{3}{4} + \frac{12}{7} \times \frac{3}{4}} = \frac{\frac{15}{28}}{\frac{3}{4} + \frac{9}{7}}$		
	$=\frac{15}{28} \times \frac{28}{57} = \frac{5}{19}$	A1	
	360	3mks	
8.	No of sides = $\frac{360}{24}$ = 15	M1 M1	
	No of tiangles = $15 - 2 = 13$	A1	
	Sum of angle = $13 \times 180 = 2,340^{\circ}$		
9.	22 1 22	3mks	
9.	$C = \frac{22}{7} \times 14 \text{ or } C = \frac{1}{2} \times \frac{22}{7} \times 14 \times 2$	M1	
	= 44cm	M1	
	$P = 44 + 12 + 2(8^2 + 6^2)^{\frac{1}{2}}$		
	= 76cm	A1	
10	1000	3mks	
10	1000 x 84.2084 = 84208.3	M1	
	- 84208.3 84208.3 - 40000		
	= 44208.30		
	44,208	M1	
	135.1293		
	= 327	A1	
		3mks	
11	Now 1n 12yrs		
	Katu x yrs x + 12		
	Son x/6yrs x/6 + 12 Daughter x/4 yrs x/4 + 12		
	(x/6 + 12) + (x/4 + 12) = (x + 12) - 9		
	21 = x - x/6 - x/4		
	21 = 7x	M1	
	12		
	7x = 252		
	x = 36yrs Katu is 36yrs old now	M1	
	Rata is soyis old flow	A1	

12	1y 2 < 1/ (y ± 9)			
12	$4x - 3 < \frac{1}{2}(x + 8)$ $4x - \frac{1}{2}x < 4 + 3$			
	$3\% \times 7$		M1	
	x < 2		IVII	
	x < 2 ½ x + 4 < x + 5			
	-1 < ½ x			
			M1	
	-2 < x -2 < x < 2		IVII	
	- 1 1 1- 1-			
	-2 -1 0 1 2			
	-2 -1 0 1 2		B1	
			3mks	
13	5.5.5.6.00		311163	
13	G.C.D for 840 and 396		M1	
	2 840 396		IVII	
	2 420 148		M1	
	2 210 74		IVII	
	105 37		A1	
	$2x2x2 = 8m^2$			
1.4	Longth of the group and in long from A.C. Com.	1	3mks	
14.	Length of the perpendicular from A 6.0cm B			
		A		
		1 kg	··· · · · · · · · · · · · · · · · · ·	
			/	
		1		
			/	
		1	-	+
		1		
				1
	B1	R	1	
	B1	BRy		
		1		
		/ .		
15	Let the number be xy			
1.5	x + y = 11(i)			
	(10y + x) - (10x + y) = 9		M1	
	9y - 9x = 9 $y - x = 1$		1712	
	x + (x + 1) = 11		M1	
	2x = 10		M1	
	x = 5 $y = 5+1=6$		1712	
	The original no. 56		A1	
	The original not 50		4mks	
			TITING	

1.0	256 64		
16	$vsf = \frac{250}{100} = \frac{64}{100}$		
	$\frac{108}{108}$ 27		
	$_{laf} = \sqrt[3]{64} = 4$		
	$vsf = \frac{256}{108} = \frac{64}{27}$ $lsf = \sqrt[3]{\frac{64}{27}} = \frac{4}{3}$ $asf = \frac{16}{9}$	M1	
	16		
	$asf = \frac{10}{\Omega}$		
		M1	
	SA of $l \arg er \ container = \frac{16}{9} \times 810 cm^2$		
		A1	
	$=1,440cm^2$	7.12	
		3mks	
17.	(a) $\frac{H}{h} = \frac{R}{r} \Rightarrow \frac{48}{16} = \frac{h+21}{h}$		
		M1	
	48h = 16h + 336	A1	
	32h = 336 h = 10.5cm	M1	
	H = 10.5 + 21 = 31.5cm	M1	
	(b) Volume of solid frustum	A1	
	$\frac{1}{3}\pi R^2 H - \frac{1}{3}\pi r^2 h$	M1	
	$\frac{1}{3}$ $\frac{22}{x^7}$ x 482 x 31.5 - $\frac{22}{7}$ x $\frac{1}{3}$ x162 x 10.5	M1	
		IVII	
	= 76,032 - 2816	M1	
	(c) $L = \sqrt{48^2 - 31.5^2} = 36.22$ cm	M1	
	• •		
	$I = \sqrt{16^2 - 10.5^2} = 12.07$ cm	A1	
	curved surface area		
	²² / ₇ x 48 x 36.22 - ⁷ / ₇ x 16 x 12.07		
	$=4857.1cm^{2}$		
	Area of top and bottom		
	22 22		
	$\frac{1}{7}$ x 482 + $\frac{1}{7}$ x 162 = 8045.71		
	Total surface area = 4857.1 + 8045.71		
	= 12902.cm2		
		10mks	
18.	a) <rst 180="" 75="1050</th" =="" –=""><th>B1</th><th></th></rst>	B1	
	Cyclic angles add up to 1800.	B1	
	b) <sut (82="" +="" 180="" 75)="230</th" =="" –=""><th>B1</th><th></th></sut>	B1	
	Angles of a triangle add up to 1800	B1	
	c) <pst 440<="" =="" th=""><th>B1</th><th></th></pst>	B1	
	Angles subtended by the same chord i.e. chord PT are equal.		
	The angle PQT = 440	B1	
		1 21	
	,		
	750 x 2 = 1500	D4	
	Chord RT subtended <rqt 750<="" =="" th=""><th>B1</th><th></th></rqt>	B1	
	Same chord RT subtends <rot at="" centre<="" th="" the=""><th></th><th></th></rot>		
	Hence 75 x 2 = 1500	B1	
	e) 180 – (44 + 46 + 15 + 37) = 380		
	Cyclic angles add up to 1800.	B1	
	SQOT		
	<sqp +="" <pts="1800</th"><th>B1</th><th></th></sqp>	B1	

		10mks
19	(a) (i) Capacity of the tank	
	$= 2.4 \times 2.8 \times 3 \times 1000$	
	= 20160L	M1
	Amount = 20160 – 3600	
	= 16560 Litres	A1
	(ii) Time taken to fill - 25	
	(ii) Time taken to fill = 0.5	M1
	=0.58x60x60	A1
	=9hr 12 min	
	(b)In 1hr, pipe A and B fill $\frac{1}{3} + \frac{1}{6} = \frac{1}{2}$	M1
	in 1 hr pipe C empties of the tank the	M1
	next hour all pipes open, amount in tank increases by $\frac{1}{2} - \frac{1}{8}$	
	= B 1 3	M1
	Time taken to fill the remaining half of the tank is $\frac{1}{2} \neq \frac{1}{8}$	M1
	= 2 x 3 = 3 hrs	A1
	Total time = $1 + 3$	\frac{\tau}{\tau}
	= 2hrs 20 mins	
	- 21113 20 1111113	10mks
20	() (() () () () () () () () (Tomks
	(a) Commission $\frac{2}{100} \times (500 \times 360)$	M1
	= 3600	
	Total pay 12000 + 3600 M1	
	Shs.15600	A1
	110	
	$(b) (i) \frac{110}{100} \times 12000 = 13200$	M1
	17600 – 13200	
	= 4400	M1
		N41
	$\frac{2}{100}\chi = 4400$	M1
	$\chi = 4400 \times \frac{100}{2}$	M1
	= 222000	
		A1
	$(ii) \frac{222000}{}$	
	500	M1
	= 440 pairs	A1
		10mks
	(a)Speed of car= (x+20) km/h	
	Speed of lorry = x kh/h	
	$\frac{280}{1} - \frac{280}{1} = \frac{11}{1}$	M2
	x x+20 6	
	280 (x+20) = 280(x) = 7/6 (x2+20x)	M1
	$1680 \times + 33600 - 1680 \times = 7 \times 2 + 140 \times$	D41
	7x2 + 140x - 33600 = 0	M1

		•	
	x2 + 20x - 4800 = 0		
	(x+80)(x-60) = 0	M1	
	x= 60kh/h	A1	
	·		
	b)Time taken = 280 = 4hr, 40min		
	60		
	Arrival time 8.15am for the lorry 4.40	M1	
		IVII	
	12.55pm		
	During overtaking distance travelled	M1	
	60 x 4 = 240km		
	280 - 240 = 40 km		
	For car 40 = 30mins	M1	
	80		
	Time 12.15pm – 3 hours		
	=9.15am	A1	
	-5.15diii	10mks	
22	F	TOTTIKS	
22		C4	Caala waad
	c n	S1	Scale used
	\		
		B4	Offset at 900 to AF
	\c		
	\ E		
	\ \ \		
	н\		
	\		
	В		
	\ /		
	¥		
	h) 1/2 v 40 v 70 – 1400		
	b) 1/2 x 40 x 70 = 1400		
	$1/2 \times 80 \times 170 = 6800$		
	1/2 x 80 x 140 = 5600	M1	
	1/2 x 140 x 100 = 7000		
	$1/2 \times 80 \times 60 = 2400$	M1	
	1/2 x 140 x 60 = 4200		
	1/2 x 160 x 240 = 19200		
	1/2 x 100 x 40 = 2000	N/1	
	= 48,600m2	M1	
	10,000		
	= 4.86 hectares		

		A1
		10mks
	΄ Λ	TOTIKS
23	1	
23		B1
	A B	B1
	14	B1
		B1
		B1
	D 184km	
	20 Tools	
	C Victory	
	Gokm Mesha	
	· · · · · · · · · · · · · · · · · · ·	
	•	
	(a) BC = $8.0\pm0.1 \times 10 = 80\pm1 \text{km}$	B1
	Bearing of B from C	B1
	≅ N43±1E	
	(b) DB = $7.1\pm0.1 \times 10 = 71\pm1 \text{km}$	B1
	Bearing of D from B S650±W	B1
	c) bearing of A from D S50±10E	B1
	s, seeming or seeming	10mks
24.	a)i) V = 135 x 0.15 = 20.25m3	M1
	,,	A1
	ii) 1m3 = 2500kg	
	20.25m3 = x	
	= 20.25 x 2500	
	= 50625kg	A1
	ii) C:B:J	
	1:4:4	
	Cement = 1/9 x 50625	M1
	= 5625kg	
		A1
	b) 5625/50	
	= 112.5 bags	M1
		A1
	c) Sand = 4/9 x 50625 = 22500	M1
	7 tons => 7000kg	
	= 22500/7000	M1
	= 3.2 lorries	A1
1		10mks